Implausible alternatives in eliciting multi-attribute value functions

Many methods to elicit preference models in multi-attribute decision making rely on evaluations of a set of sample alternatives by decision makers. Using orthogonal design methods to create this set of alternatives might require respondents to evaluate unrealistic alternatives. In this paper, we perform an empirical study to analyze whether the presence of such implausible alternatives has an effect on the quality of utility elicitation. Using a new approach to measure consistency, we find that implausible alternatives in fact, have a positive effect on consistency of intra-attribute preference information and consistency with dominance, but do not affect inter-attribute preference information.

[1]  R BellDavid,et al.  Shopping Behavior and Consumer Preference for Store Price Format , 1998 .

[2]  Milosz Kadzinski,et al.  Selection of a representative value function in robust multiple criteria sorting , 2011, Comput. Oper. Res..

[3]  Vijay Mahajan,et al.  On the Creation of Acceptable Conjoint Analysis Experimental Designs , 1991 .

[4]  Joel Huber,et al.  The Impact of Inferential Beliefs on Product Evaluations , 1982 .

[5]  Paul E. Green,et al.  On the Design of Choice Experiments Involving Multifactor Alternatives , 1974 .

[6]  Richard M. Johnson Trade-Off Analysis of Consumer Values , 1974 .

[7]  P. Green,et al.  Conjoint Analysis in Consumer Research: Issues and Outlook , 1978 .

[8]  Paul E. Green,et al.  Conjoint Analysis in Marketing: New Developments with Implications for Research and Practice , 1990 .

[9]  John R. Hauser,et al.  Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .

[10]  Keith W. Hipel,et al.  Multiple-Criteria Sorting Using Case-Based Distance Models With an Application in Water Resources Management , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[11]  Naresh K. Malhotra,et al.  Improving Predictive Power of Conjoint Analysis by Constrained Parameter Estimation , 1983 .

[12]  Enrico Colla International expansion and strategies of discount grocery retailers: the winning models , 2003 .

[13]  J. Hair Multivariate data analysis : a global perspective , 2010 .

[14]  G. Zinkhan,et al.  Determinants of retail patronage: A meta-analytical perspective , 2006 .

[15]  Dhruv Grewal,et al.  Planning Merchandising Decisions to Account for Regional and Product Assortment Differences , 1999 .

[16]  Jean C. Darian,et al.  Retail patronage intentions: the relative importance of perceived prices and salesperson service attributes , 2005 .

[17]  Rudolf Vetschera,et al.  Learning about preferences in electronic negotiations - A volume-based measurement method , 2009, Eur. J. Oper. Res..

[18]  C. C. Waid,et al.  An Experimental Comparison of Different Approaches to Determining Weights in Additive Utility Models , 1982 .

[19]  P. Green,et al.  Thirty Years of Conjoint Analysis: Reflections and Prospects , 2001 .

[20]  Martin Weber,et al.  Behavioral influences on weight judgments in multiattribute decision making , 1993 .

[21]  Sanjoy Ghose,et al.  When Choice Models Fail: Compensatory Models in Negatively Correlated Environments , 1989 .

[22]  Kathleen Seiders,et al.  The impact of supercenters on traditional food retailers in four markets , 2000 .

[23]  Felix Eggers,et al.  Preference Measurement with Conjoint Analysis. Overview of State-of-the-Art Approaches and Recent Developments , 2011 .

[24]  Constantin Zopounidis,et al.  Developing sorting models using preference disaggregation analysis: An experimental investigation , 2004, Eur. J. Oper. Res..

[25]  Evangelos Grigoroudis,et al.  Derived vs. stated importance in customer satisfaction surveys , 2003, Oper. Res..

[26]  Hillary A. Holloway,et al.  Decision Aiding Question selection for multi-attribute decision-aiding , 2003 .

[27]  Dan Horsky,et al.  Estimation of Attribute Weights from Preference Comparisons , 1984 .

[28]  Michel Beuthe,et al.  Comparative analysis of UTA multicriteria methods , 2001, Eur. J. Oper. Res..

[29]  Torben Hansen,et al.  A hierarchical Bayes model of choice between supermarket formats , 2003 .

[30]  Paul E. Green,et al.  Conjoint Internal Validity Under Alternative Profile Presentations , 1988 .

[31]  Greg M. Allenby,et al.  Incorporating Prior Knowledge into the Analysis of Conjoint Studies , 1995 .

[32]  James M. Lattin,et al.  Shopping Behavior and Consumer Preference for Store Price Format: Why Large Basket Shoppers Prefer Edlp , 1998 .

[33]  Joel Huber,et al.  Testing the Impact of Dimensional Complexity and Affective Differences of Paired Concepts in Adaptive Conjoint Analysis , 1987 .

[34]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[35]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[36]  Morris B. Holbrook,et al.  Conjoint Analysis on Objects with Environmentally Correlated Attributes: The Questionable Importance of Representative Design , 1990 .

[37]  Paul E. Green,et al.  Cross-Validation Assessment of Alternatives to Individual-Level Conjoint Analysis: A Case Study , 1989 .

[38]  Allan D. Shocker,et al.  Estimating the weights for multiple attributes in a composite criterion using pairwise judgments , 1973 .

[39]  Martin Weber,et al.  The Effect of Attribute Ranges on Weights in Multiattribute Utility Measurements , 1993 .

[40]  Yannis Siskos,et al.  Preference disaggregation: 20 years of MCDA experience , 2001, Eur. J. Oper. Res..