Competition of several carbonation reactions in concrete: a parametric study

Carbonation caused by atmospheric carbon dioxide is one of the major physicochemical processes which can compromise the service life of reinforced concrete structures. While the bulk of the carbonation reaction is that of calcium hydroxide, other constituents of the porous matrix can also carbonate and compete with calcium hydroxide for carbon dioxide. Particularly the carbonation of calcium–silicate hydrates and unhydrated constituents are neglected by most authors in carbonation prediction models. In this paper, a mathematical model of carbonation is extended to include additional carbonation and hydration reactions. The competition of the several reactions and their effect on the carbonation depth is investigated by dimensional analysis and numerical simulations. A parameter study emphasises that multiple internal reaction layers appear. Their position and speed essentially depend on the strength of the different reactions. It is also observed that, for a wide range of parameters, the effect of some of the additional reactions on the carbonation depth is small. In particular, a comparison with data from laboratory experiments justifies the neglect of the carbonation of the unhydrated constituents in prediction models.

[1]  Michael Böhm,et al.  Dynamics of the internal reaction layer arising during carbonation of concrete , 2007 .

[2]  Alexander Steffens,et al.  Modeling carbonation for corrosion risk prediction of concrete structures , 2002 .

[3]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[4]  T. Chaussadent Etat des lieux et reflexions sur la carbonatation du beton arme , 1999 .

[5]  Alain Sellier,et al.  COUPLED MOISTURE-CARBON DIOXIDE-CALCIUM TRANSFER MODEL FOR CARBONATION OF CONCRETE , 2004 .

[6]  K Katoh,et al.  Is Concrete a Science , 2005 .

[7]  A. Muntean,et al.  Modelling and simulation of concrete carbonation : competition of several carbonation reactions , 2005 .

[8]  Michael N. Fardis,et al.  Physicochemical processes and mathematical modeling of concrete chlorination , 1996 .

[9]  Dmitrii A. Kulik,et al.  Aqueous Solubility Diagrams for Cementitious Waste Stabilization Systems: II, End‐Member Stoichiometries of Ideal Calcium Silicate Hydrate Solid Solutions , 2001 .

[10]  J. Crank Free and moving boundary problems , 1984 .

[11]  H. Taylor,et al.  Solubility and structure of calcium silicate hydrate , 2004 .

[12]  Malte A. Peter Homogenisation of a chemical degradation mechanism inducing an evolving microstructure , 2007 .

[13]  G. Froment,et al.  Chemical Reactor Analysis and Design , 1979 .

[14]  A. King,et al.  The effect of a retarder on the early stages of the hydration of tricalcium silicate , 2003 .

[15]  Michael Böhm,et al.  A two-scale modelling approach to reaction-diffusion processes in porous materials , 2007 .

[16]  J. Bear,et al.  Modeling groundwater flow and pollution , 1987 .

[17]  F. Dunstetter,et al.  Polymorphism of tricalcium silicate, the major compound of Portland cement clinker: 1. Structural data: review and unified analysis , 2006 .

[18]  Michael N. Fardis,et al.  A reaction engineering approach to the problem of concrete carbonation , 1989 .

[19]  C. Y. Wen,et al.  NONCATALYTIC HETEROGENEOUS SOLID-FLUID REACTION MODELS , 1968 .

[20]  Alex Williams,et al.  Handbook of analytical techniques , 2001 .

[21]  Renato Vitaliani,et al.  The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials , 1993 .

[22]  Dieter Bunte Zum karbonatisierungsbedingten Verlust der Dauerhaftigkeit von Außenbauteilen aus Stahlbeton , 1994 .

[23]  M. Wolff,et al.  Validation of a TP model with backstress for the pearlitic transformation of the steel 100Cr6 under step-wise loads , 2007 .

[24]  Alexander Steffens Modellierung von Karbonatisierung und Chloridbindung zur numerischen Analyse der Korrosionsgefährdung der Betonbewehrung , 2000 .

[25]  A. King,et al.  On the initial stages of cement hydration , 2001 .

[26]  V. I. Babushkin,et al.  Thermodynamics of silicates , 1984 .

[27]  Robert H. Martin,et al.  A moving boundary problem modelling diffusion with nonlinear absorption , 1984 .

[28]  A. Muntean,et al.  Dynamics of a Moving Reaction Interface in a Concrete Wall , 2006 .