Nonmonotone equilibrium problems: coercivity conditions and weak regularization

We consider a general equilibrium problem in a finite-dimensional space setting and propose a new coercivity condition for existence of solutions. We also show that it enables us to create a broad family of regularization methods with preserving well-definiteness and convergence of the iteration sequence without additional monotonicity assumptions. Some examples of applications are also given.

[1]  I. V. Konnov,et al.  On the convergence of a regularization method for variational inequalities , 2006 .

[2]  Alexander M. Rubinov,et al.  Generalized convexity and related topics , 2006 .

[3]  Siegfried Schaible,et al.  Minimal Coercivity Conditions and Exceptional Families of Elements in Quasimonotone Variational Inequalities , 2004 .

[4]  I. V. Konnov,et al.  Partial regularization method for nonmonotone variational inequalities , 2008 .

[5]  Igor V. Konnov Dual approach for a class of implicit convex optimization problems , 2004, Math. Methods Oper. Res..

[6]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[7]  Monica Bianchi,et al.  Coercivity Conditions for Equilibrium Problems , 2005 .

[8]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[9]  Jinlu Li,et al.  Exceptional family of elements and solvability of variational inequalities for mappings defined only on closed convex cones in Banach spaces , 2005 .

[10]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[11]  Siegfried Schaible,et al.  Handbook of Generalized Convexity and Generalized Monotonicity , 2005 .

[12]  George Isac,et al.  Leray–Schauder Type Alternatives, Complementarity Problems and Variational Inequalities , 2006 .

[13]  C. Baiocchi,et al.  Variational and quasivariational inequalities: Applications to free boundary problems , 1983 .

[14]  P. Pardalos,et al.  Equilibrium problems : nonsmooth optimization and variational inequality models , 2004 .

[15]  Dan Butnariu,et al.  Regularization and Resolution of Monotone Variational Inequalities with Operators Given by Hypomonotone Approximations , 2004 .

[16]  I. V. Konnov,et al.  Regularization of Nonmonotone Variational Inequalities , 2006 .

[17]  I. Konnov Generalized Monotone Equilibrium Problems and Variational Inequalities , 2005 .

[18]  C. Ha A generalization of the proximal point algorithm , 1990 .

[19]  J. Gwinner,et al.  A note on pseudomonotone functions, regularization, and relaxed coerciveness , 1997 .

[20]  M. Patriksson Nonlinear Programming and Variational Inequality Problems: A Unified Approach , 1998 .

[21]  I. Konnov,et al.  Descent methods for monotone equilibrium problems in Banach spaces , 2006 .

[22]  F. Facchinei,et al.  Beyond Monotonicity in Regularization Methods for Nonlinear Complementarity Problems , 1999 .

[23]  Elisabetta Allevi,et al.  Partitionable Variational Inequalities with Multi-valued Mappings , 2007 .

[24]  M. Patriksson Nonlinear Programming and Variational Inequality Problems , 1999 .

[25]  I. V. Konnov Convex optimization problems with arbitrary right-hand side perturbations , 2005 .

[26]  Wolfgang Domschke,et al.  Operations Research Proceedings 1999 , 2000 .

[27]  G. Isac Tihonov′s Regularization and the Complementarity Problem in Hilbert Spaces , 1993 .

[28]  Vyacheslav V. Kalashnikov,et al.  A Regularization Approach for Variational Inequalities with Pseudo-Monotone Operators , 2000 .