A family of three-term conjugate gradient methods with sufficient descent property for unconstrained optimization
暂无分享,去创建一个
[1] Li Zhang,et al. Some descent three-term conjugate gradient methods and their global convergence , 2007, Optim. Methods Softw..
[2] Jorge Nocedal,et al. Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..
[3] L. Liao,et al. New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .
[4] J. Borwein,et al. Two-Point Step Size Gradient Methods , 1988 .
[5] M. Hestenes,et al. Methods of conjugate gradients for solving linear systems , 1952 .
[6] Hiroshi Yabe,et al. Globally Convergent Three-Term Conjugate Gradient Methods that Use Secant Conditions and Generate Descent Search Directions for Unconstrained Optimization , 2011, Journal of Optimization Theory and Applications.
[7] Li Zhang. A new Liu-Storey type nonlinear conjugate gradient method for unconstrained optimization problems , 2009 .
[8] Issam A. R. Moghrabi,et al. Alternative parameter choices for multi-step Quasi-Newton methods , 1993 .
[9] William W. Hager,et al. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..
[10] Jorge J. Moré,et al. Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .
[11] Issam A. R. Moghrabi,et al. Multi-step quasi-Newton methods for optimization , 1994 .
[12] Li Zhang,et al. A nonlinear conjugate gradient method based on the MBFGS secant condition , 2006, Optim. Methods Softw..
[13] Li Zhang,et al. Global convergence of a modified Fletcher–Reeves conjugate gradient method with Armijo-type line search , 2006, Numerische Mathematik.
[14] Weijun Zhou,et al. A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence , 2006 .
[15] Hiroshi Yabe,et al. Global Convergence Properties of Nonlinear Conjugate Gradient Methods with Modified Secant Condition , 2004, Comput. Optim. Appl..
[16] Nicholas I. M. Gould,et al. CUTE: constrained and unconstrained testing environment , 1995, TOMS.
[17] C. M. Reeves,et al. Function minimization by conjugate gradients , 1964, Comput. J..
[18] Stephen J. Wright,et al. Numerical Optimization (Springer Series in Operations Research and Financial Engineering) , 2000 .
[19] Nicholas I. M. Gould,et al. CUTEr and SifDec: A constrained and unconstrained testing environment, revisited , 2003, TOMS.
[20] M. Al-Baali. Descent Property and Global Convergence of the Fletcher—Reeves Method with Inexact Line Search , 1985 .
[21] W. Hager,et al. A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .
[22] H. Sorenson. Comparison of some conjugate direction procedures for function minimization , 1969 .
[23] Ya-Xiang Yuan,et al. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..
[24] Roger Fletcher,et al. On the Barzilai-Borwein Method , 2005 .
[25] William W. Hager,et al. The Limited Memory Conjugate Gradient Method , 2013, SIAM J. Optim..
[26] C. Storey,et al. Efficient generalized conjugate gradient algorithms, part 1: Theory , 1991 .
[27] Gaohang Yu,et al. Global convergence of modified Polak-Ribière-Polyak conjugate gradient methods with sufficient descent property , 2008 .
[28] Hiroshi Yabe,et al. A new nonlinear conjugate gradient method for unconstrained optimization , 2005 .
[29] Yu-Hong Dai,et al. A Nonlinear Conjugate Gradient Algorithm with an Optimal Property and an Improved Wolfe Line Search , 2013, SIAM J. Optim..
[30] William W. Hager,et al. Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.
[31] Hiroshi Yabe,et al. A Three-Term Conjugate Gradient Method with Sufficient Descent Property for Unconstrained Optimization , 2011, SIAM J. Optim..
[32] W. Cheng. A Two-Term PRP-Based Descent Method , 2007 .
[33] Hiroshi Yabe,et al. Multi-step nonlinear conjugate gradient methods for unconstrained minimization , 2008, Comput. Optim. Appl..