Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study.

We have used optical tweezers to study the elasticity of red cell membranes; force was applied to a bead attached to a permeabilized spherical ghost and the force-extension relation was obtained from the response of a second bead bound at a diametrically opposite position. Interruption of the skeletal network by dissociation of spectrin tetramers or extraction of the actin junctions engendered a fourfold reduction in stiffness at low applied force, but only a twofold change at larger extensions. Proteolytic scission of the ankyrin, which links the membrane skeleton to the integral membrane protein, band 3, induced a similar effect. The modified, unlike the native membranes, showed plastic relaxation under a prolonged stretch. Flaccid giant liposomes showed no measurable elasticity. Our observations indicate that the elastic character is at least as much a consequence of the attachment of spectrin as of a continuous membrane-bound network, and they offer a rationale for formation of elliptocytes in genetic conditions associated with membrane-skeletal perturbations. The theory of Parker and Winlove for elastic deformation of axisymmetric shells (accompanying paper) allows us to determine the function BH(2) for the spherical saponin-permeabilized ghost membranes (where B is the bending modulus and H the shear modulus); taking the literature value of 2 x 10(-19) Nm for B, H then emerges as 2 x 10(-6) Nm(-1). This is an order of magnitude higher than the value reported for intact cells from micropipette aspiration. Reasons for the difference are discussed.

[1]  S Chien,et al.  Influence of network topology on the elasticity of the red blood cell membrane skeleton. , 1997, Biophysical journal.

[2]  R. Hochmuth,et al.  Membrane mechanical properties of ATP-depleted human erythrocytes. , 1978, Blood.

[3]  S. Orkin,et al.  Anion Exchanger 1 (Band 3) Is Required to Prevent Erythrocyte Membrane Surface Loss but Not to Form the Membrane Skeleton , 1996, Cell.

[4]  S Chien,et al.  Spectrin properties and the elasticity of the red blood cell membrane skeleton. , 1997, Biorheology.

[5]  R. Josephs,et al.  On the structure of erythrocyte spectrin in partially expanded membrane skeletons. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[6]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[7]  D. Discher,et al.  Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled annexin V. , 1996, Blood.

[8]  D. Discher,et al.  Kinematics of red cell aspiration by fluorescence-imaged microdeformation. , 1996, Biophysical journal.

[9]  P. Thompson Red Blood Cell Membranes , 1990 .

[10]  D Needham,et al.  Elastic deformation and failure of lipid bilayer membranes containing cholesterol. , 1990, Biophysical journal.

[11]  E. Evans,et al.  New membrane concept applied to the analysis of fluid shear- and micropipette-deformed red blood cells. , 1973, Biophysical journal.

[12]  E. Evans Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. , 1983, Biophysical journal.

[13]  H. Gaub,et al.  Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae. , 1987, Biochemistry.

[14]  G J Streekstra,et al.  A new method to study shape recovery of red blood cells using multiple optical trapping. , 1995, Biophysical journal.

[15]  F. Oski The Red Blood Cell Membrane , 1968, Clinics in haematology.

[16]  P. Seeman TRANSIENT HOLES IN THE ERYTHROCYTE MEMBRANE DURING HYPOTONIC HEMOLYSIS AND STABLE HOLES IN THE MEMBRANE AFTER LYSIS BY SAPONIN AND LYSOLECITHIN , 1967, The Journal of cell biology.

[17]  Evans,et al.  Entropy-driven tension and bending elasticity in condensed-fluid membranes. , 1990, Physical review letters.

[18]  M. Stöhr,et al.  Selective alteration of erythrocyte deformabiliby by SH-reagents: evidence for an involvement of spectrin in membrane shear elasticity. , 1978, Biochimica et biophysica acta.

[19]  D. Boal,et al.  Computer simulation of a model network for the erythrocyte cytoskeleton. , 1994, Biophysical journal.

[20]  A. Brain,et al.  Association state of human red blood cell band 3 and its interaction with ankyrin. , 1995, Blood.

[21]  I. Bivas,et al.  Bending elasticity and thermal fluctuations of lipid membranes. Theoretical and experimental requirements , 1989 .

[22]  K. Sung,et al.  Viscoelastic properties of red cell membrane in hereditary elliptocytosis. , 1989, Blood.

[23]  J. Goerke,et al.  Freeze-fracture identification of sterol-digitonin complexes in cell and liposome membranes , 1978, The Journal of cell biology.

[24]  S Chien,et al.  An elastic network model based on the structure of the red blood cell membrane skeleton. , 1996, Biophysical journal.

[25]  D. Golan,et al.  Red cell membranes of ankyrin-deficient nb/nb mice lack band 3 tetramers but contain normal membrane skeletons. , 1997, Biochemistry.

[26]  H. Ishikawa,et al.  The role of ankyrin in shape and deformability change of human erythrocyte ghosts. , 1984, Biochimica et biophysica acta.

[27]  Christoph F. Schmidt,et al.  Conformation and elasticity of the isolated red blood cell membrane skeleton. , 1992, Biophysical journal.

[28]  D. Branton,et al.  Associations of erythrocyte membrane proteins. Binding of purified bands 2.1 and 4.1 to spectrin. , 1980, The Journal of biological chemistry.

[29]  N. Mohandas,et al.  Erythrocyte membrane deformability and stability: two distinct membrane properties that are independently regulated by skeletal protein associations , 1986, The Journal of cell biology.

[30]  The human erythrocyte membrane skeleton may be an ionic gel. III. Micropipette aspiration of unswollen erythrocytes. , 1986 .

[31]  E. Sackmann,et al.  Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition. , 1995, Biophysical journal.

[32]  A. Mikkelsen,et al.  The human erythrocyte membrane skeleton may be an ionic gel , 1986, European Biophysics Journal.

[33]  M. Kozlov,et al.  Model of red blood cell membrane skeleton: electrical and mechanical properties. , 1987, Journal of theoretical biology.

[34]  M. Kates Techniques of Lipidology , 1972 .

[35]  A Chabanel,et al.  Influence of cholesterol content on red cell membrane viscoelasticity and fluidity. , 1983, Biophysical journal.

[36]  Shih-Chun Liu,et al.  Spectrin tetramer–dimer equilibrium and the stability of erythrocyte membrane skeletons , 1980, Nature.

[37]  L. Treloar The Physics of Rubber Elasticity (J. Meixner) , 1959 .

[38]  R. Waugh,et al.  Reductions of erythrocyte membrane viscoelastic coefficients reflect spectrin deficiencies in hereditary spherocytosis. , 1988, The Journal of clinical investigation.

[39]  P. Agre,et al.  Alteration of the erythrocyte membrane skeletal ultrastructure in hereditary spherocytosis, hereditary elliptocytosis, and pyropoikilocytosis. , 1990, Blood.

[40]  D. Wallach,et al.  Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. , 1971, Biochemistry.

[41]  R. Wilson,et al.  A study of red cell membrane properties in relation to malarial invasion. , 1989, Molecular and biochemical parasitology.

[42]  Watt W. Webb,et al.  Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles , 1984 .

[43]  W. Gratzer,et al.  Study of actin filament ends in the human red cell membrane. , 1986, Journal of molecular biology.

[44]  A W Jay,et al.  Geometry of the human erythrocyte. I. Effect of albumin on cell geometry. , 1975, Biophysical journal.

[45]  B. Vértessy,et al.  Elasticity of the human red cell membrane skeleton. Effects of temperature and denaturants. , 1989, Biophysical journal.

[46]  S. Hénon,et al.  A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. , 1999, Biophysical journal.

[47]  C. P. Winlove,et al.  The deformation of spherical vesicles with permeable, constant-area membranes: application to the red blood cell. , 1999, Biophysical journal.

[48]  G. Ralston,et al.  Solubilization and denaturation of monomeric actin from erythrocyte membranes by p-mercuribenzenesulfonate. , 1990, Biochimica et biophysica acta.

[49]  E. Evans,et al.  Mechanical properties of the red cell membrane in relation to molecular structure and genetic defects. , 1994, Annual review of biophysics and biomolecular structure.

[50]  Samuel E. Lux,et al.  Blood: Principles and Practice of Hematology , 1995 .

[51]  J. Käs,et al.  Shape transitions and shape stability of giant phospholipid vesicles in pure water induced by area-to-volume changes. , 1991, Biophysical journal.

[52]  V. Bennett,et al.  Regulatory domains of erythrocyte ankyrin. , 1987, The Journal of biological chemistry.

[53]  P. Seeman,et al.  STRUCTURE OF MEMBRANE HOLES IN OSMOTIC AND SAPONIN HEMOLYSIS , 1973, The Journal of cell biology.

[54]  R. Hochmuth,et al.  Mechanochemical Properties of Membranes , 1978 .

[55]  M. Tanner,et al.  Identification of the Membrane Attachment Sites for Protein 4.1 in the Human Erythrocyte (*) , 1995, The Journal of Biological Chemistry.