Cellulose‐Derivative‐Based Gate Dielectric for High‐Performance Organic Complementary Inverters

been realized using organic thin-fi lm transistors (OTFTs) as the essential element. In the majority of these applications OTFTs are integrated either in the form of arrays or as digital logic. The fundamental building block of digital logic is the inverter, a circuit that inverts an input signal. Much work has been devoted in the last fi ve years to design unipolar inverters using p-typeonly OTFTs. [ 18‐23 ] Unfortunately, unipolar logic based on single gate OTFTs always suffers from high power consumption and low noise margin coupled with high noise margin variability and therefore impedes the fabrication of complex circuits having hundreds or more logic gates. [ 19,22,23 ] In this context, it stands

[1]  D. K. Owens,et al.  Estimation of the surface free energy of polymers , 1969 .

[2]  J. Lohstroh,et al.  Worst-case static noise margin criteria for logic circuits and their mathematical equivalence , 1983, IEEE Journal of Solid-State Circuits.

[3]  Jean-Paul Kleider,et al.  Electrical Properties of Amorphous Silicon Transistors and MIS‐Devices: Comparative Study of Top Nitride and Bottom Nitride Configurations , 1993 .

[4]  Robert C. Haddon,et al.  C60 thin film transistors , 1995 .

[5]  D. W. Hoffman,et al.  Thin-Film Deposition: Principles and Practice , 1996 .

[6]  R. Sarpeshkar,et al.  Large-scale complementary integrated circuits based on organic transistors , 2000, Nature.

[7]  V. R. Raju,et al.  Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Rahul Sarpeshkar,et al.  Design and fabrication of organic complementary circuits , 2001 .

[9]  G. Paasch,et al.  Subthreshold characteristics of field effect transistors based on poly(3-dodecylthiophene) and an organic insulator , 2002 .

[10]  A. Carlo,et al.  Influence of carrier mobility and contact barrier height on the electrical characteristics of organic transistors , 2002 .

[11]  N. Tessler,et al.  Structures of polymer field-effect transistor: Experimental and numerical analyses , 2002 .

[12]  Janos Veres,et al.  A novel gate insulator for flexible electronics , 2003 .

[13]  M. Chabinyc,et al.  Gap states in organic semiconductors: Hydrogen- and oxygen-induced states in pentacene , 2003 .

[14]  Oana D. Jurchescu,et al.  Effect of impurities on the mobility of single crystal pentacene , 2004, cond-mat/0404130.

[15]  H. Gomes,et al.  Electronic transport in field-effect transistors of sexithiophene , 2004 .

[16]  Kris Myny,et al.  50 MHz rectifier based on an organic diode , 2005, Nature materials.

[17]  Tobin J Marks,et al.  Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. , 2005, Journal of the American Chemical Society.

[18]  Chan Eon Park,et al.  The Effect of Gate‐Dielectric Surface Energy on Pentacene Morphology and Organic Field‐Effect Transistor Characteristics , 2005 .

[19]  R. Coehoorn,et al.  Charge-carrier concentration dependence of the hopping mobility in organic materials with Gaussian disorder , 2005 .

[20]  Barbara Stadlober,et al.  Influence of grain sizes on the mobility of organic thin-film transistors , 2005 .

[21]  T. Jackson,et al.  Pentacene TFT driven AM OLED displays , 2005, IEEE Electron Device Letters.

[22]  P. Blom,et al.  Unified description of charge-carrier mobilities in disordered semiconducting polymers. , 2005, Physical review letters.

[23]  Kris Myny,et al.  Low voltage complementary organic inverters , 2006 .

[24]  M. Mizukami,et al.  Flexible AM OLED panel driven by bottom-contact OTFTs , 2006, IEEE Electron Device Letters.

[25]  Erik van Veenendaal,et al.  A 13.56-MHz RFID System Based on Organic Transponders , 2006, IEEE Journal of Solid-State Circuits.

[26]  Tobin J Marks,et al.  Polymer Gate Dielectric Surface Viscoelasticity Modulates Pentacene Transistor Performance , 2007, Science.

[27]  J. Gómez‐Herrero,et al.  WSXM: a software for scanning probe microscopy and a tool for nanotechnology. , 2007, The Review of scientific instruments.

[28]  Y. Arakawa,et al.  Low-voltage-operating complementary inverters with C60 and pentacene transistors on glass substrates , 2007 .

[29]  Barbara Stadlober,et al.  Orders‐of‐Magnitude Reduction of the Contact Resistance in Short‐Channel Hot Embossed Organic Thin Film Transistors by Oxidative Treatment of Au‐Electrodes , 2007 .

[30]  H. Klauk,et al.  Ultralow-power organic complementary circuits , 2007, Nature.

[31]  A. Herasimovich,et al.  Influence of traps on top and bottom contact field-effect transistors based on modified poly(phenylene-vinylene) , 2007 .

[32]  T. Someya,et al.  Sheet-Type Braille Displays by Integrating Organic Field-Effect Transistors and Polymeric Actuators , 2007, IEEE Transactions on Electron Devices.

[33]  Sui‐Dong Wang,et al.  Correlation between grain size and device parameters in pentacene thin film transistors , 2008 .

[34]  Yoshio Taniguchi,et al.  Low‐voltage, high‐gain, and high‐mobility organic complementary inverters based on N,N′‐ditridecyl‐3,4,9,10‐perylenetetracarboxylic diimide and pentacene , 2008 .

[35]  S. Yoo,et al.  Modeling the electrical characteristics of TIPS-pentacene thin-film transistors: Effect of contact barrier, field-dependent mobility, and traps , 2008 .

[36]  Eugenio Cantatore,et al.  Organic electronics: materials, technology and circuit design developments enabling new applications , 2008 .

[37]  T. Heinze,et al.  Interactions of ionic liquids with polysaccharides. VI. Pure cellulose nanoparticles from trimethylsilyl cellulose synthesized in ionic liquids , 2008 .

[38]  Eugenio Cantatore,et al.  Bottom-up organic integrated circuits , 2008, Nature.

[39]  S. Bauer,et al.  Mobile Ionic Impurities in Poly(vinyl alcohol) Gate Dielectric: Possible Source of the Hysteresis in Organic Field‐Effect Transistors , 2008 .

[40]  H. Sirringhaus Reliability of Organic Field‐Effect Transistors , 2009 .

[41]  G. Paasch,et al.  Interdependence of contact properties and field- and density-dependent mobility in organic field-effect transistors , 2009 .

[42]  Wim Dehaene,et al.  Plastic circuits and tags for 13.56 MHz radio-frequency communication , 2009 .

[43]  Jenny Nelson,et al.  The effect of morphology on electron field-effect mobility in disordered c60 thin films. , 2009, Nano letters.

[44]  Bernard Kippelen,et al.  Low-voltage flexible organic complementary inverters with high noise margin and high dc gain , 2009 .

[45]  S. Bauer,et al.  Organic Nonvolatile Memory Transistors for Flexible Sensor Arrays , 2009, Science.

[46]  W. Kern,et al.  Modification of para-sexiphenyl layer growth by UV induced polarity changes of polymeric substrates , 2009 .

[47]  Gilles Horowitz,et al.  High‐Performance Organic Field‐Effect Transistors , 2009 .

[48]  Organic complementary inverters with polyimide films as the surface modification of dielectrics , 2009 .

[49]  H. Sirringhaus,et al.  A scanning Kelvin probe study of charge trapping in zone-cast pentacene thin film transistors , 2009, Nanotechnology.

[50]  S. Bauer,et al.  Biocompatible and Biodegradable Materials for Organic Field‐Effect Transistors , 2010 .

[51]  Bernard Kippelen,et al.  Flexible hybrid complementary inverters with high gain and balanced noise margins using pentacene and amorphous InGaZnO thin-film transistors , 2010 .

[52]  Paul Heremans,et al.  Organic Transistors in Optical Displays and Microelectronic Applications , 2010, Advanced materials.

[53]  Hagen Klauk,et al.  Organic thin-film transistors. , 2010, Chemical Society reviews.

[54]  T. Someya,et al.  Large-Area Flexible Ultrasonic Imaging System With an Organic Transistor Active Matrix , 2010, IEEE Transactions on Electron Devices.

[55]  Barbara Stadlober,et al.  Fabrication of n‐ and p‐Type Organic Thin Film Transistors with Minimized Gate Overlaps by Self‐Aligned Nanoimprinting , 2010, Advanced materials.

[56]  Jaeyoung Kim,et al.  All-Printed and Roll-to-Roll-Printable 13.56-MHz-Operated 1-bit RF Tag on Plastic Foils , 2010, IEEE Transactions on Electron Devices.

[57]  Justin A. Blanco,et al.  Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. , 2010, Nature materials.

[58]  Tetsuo Urabe,et al.  An OTFT‐driven rollable OLED display , 2011 .

[59]  Barbara Stadlober,et al.  Nanoimprinted complementary organic electronics: Single transistors and inverters , 2011 .

[60]  Kris Myny,et al.  Dual‐Gate Thin‐Film Transistors, Integrated Circuits and Sensors , 2011, Advanced materials.

[61]  William J. Potscavage,et al.  Vertically stacked hybrid organic–inorganic complementary inverters with low operating voltage on flexible substrates , 2011 .

[62]  Takao Someya,et al.  Control of threshold voltage in low-voltage organic complementary inverter circuits with floating gate structures , 2011 .

[63]  S. Bauer,et al.  An All‐Printed Ferroelectric Active Matrix Sensor Network Based on Only Five Functional Materials Forming a Touchless Control Interface , 2011, Advanced materials.

[64]  Mario Caironi,et al.  Charge Injection in Solution‐Processed Organic Field‐Effect Transistors: Physics, Models and Characterization Methods , 2012, Advanced materials.

[65]  M. Kawamura,et al.  Investigation of polysilsesquioxane as a gate dielectric material for organic field-effect transistors , 2012 .

[66]  A. W. Hassel,et al.  Ultra‐thin anodic alumina capacitor films for plastic electronics , 2012 .

[67]  Wim Dehaene,et al.  An 8-Bit, 40-Instructions-Per-Second Organic Microprocessor on Plastic Foil , 2012, IEEE Journal of Solid-State Circuits.

[68]  Fabrizio Torricelli,et al.  Gate-bias assisted charge injection in organic field-effect transistors , 2012 .

[69]  C. Bettinger,et al.  Biomaterials‐Based Electronics: Polymers and Interfaces for Biology and Medicine , 2012, Advanced healthcare materials.

[70]  Air stable organic complementary inverter with high and balance noise margin based on polymer/metal oxide hybrid gate dielectrics , 2012 .

[71]  S. Bauer,et al.  Vacuum-processed polyethylene as a dielectric for low operating voltage organic field effect transistors , 2012, Organic electronics.

[72]  Mihai Irimia-Vladu,et al.  Indigo ‐ A Natural Pigment for High Performance Ambipolar Organic Field Effect Transistors and Circuits , 2012, Advanced materials.

[73]  M. Gruber,et al.  Relation between injection barrier and contact resistance in top-contact organic thin-film transistors , 2012 .

[74]  Egbert Zojer,et al.  Impact of Materials versus Geometric Parameters on the Contact Resistance in Organic Thin‐Film Transistors , 2013 .

[75]  P. Meredith,et al.  Electronic and optoelectronic materials and devices inspired by nature , 2013, Reports on progress in physics. Physical Society.

[76]  M. Kaltenbrunner,et al.  An ultra-lightweight design for imperceptible plastic electronics , 2013, Nature.

[77]  Mihai Irimia-Vladu,et al.  Hydrogen‐Bonded Semiconducting Pigments for Air‐Stable Field‐Effect Transistors , 2013, Advanced materials.

[78]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[79]  Barbara Stadlober,et al.  Cellulose as biodegradable high-k dielectric layer in organic complementary inverters , 2013 .

[80]  Zhibin Yu,et al.  User-interactive electronic skin for instantaneous pressure visualization. , 2013, Nature materials.

[81]  Giuseppe Palmisano,et al.  High performance printed N and P-type OTFTs enabling digital and analog complementary circuits on flexible plastic substrate , 2013 .

[82]  Barbara Stadlober,et al.  High performance p-type organic thin film transistors with an intrinsically photopatternable, ultrathin polymer dielectric layer , 2013, Organic electronics.

[83]  Alon A Gorodetsky,et al.  Reconfigurable Infrared Camouflage Coatings from a Cephalopod Protein , 2013, Advanced materials.

[84]  Christian C. Enz,et al.  Submicrometer Organic Thin-Film Transistors: Technology Assessment Through Noise Margin Analysis of Inverters , 2014, IEEE Transactions on Electron Devices.

[85]  Susan Mühl,et al.  Bio-Organic Electronics—Overview and Prospects for the Future , 2014 .

[86]  Mihai Irimia-Vladu,et al.  "Green" electronics: biodegradable and biocompatible materials and devices for sustainable future. , 2014, Chemical Society reviews.

[87]  B. Stadlober,et al.  Photolithographic patterning of cellulose: a versatile dual-tone photoresist for advanced applications , 2014, Cellulose.

[88]  Jeffrey S Erickson,et al.  Sweet Substrate: A Polysaccharide Nanocomposite for Conformal Electronic Decals , 2015, Advanced materials.

[89]  Vishak Venkatraman,et al.  Exploring the Potential of Nucleic Acid Bases in Organic Light Emitting Diodes , 2015, Advanced materials.