Evidence for chiral superconductivity on a silicon surface

[1]  R. Thomale,et al.  Triplet Superconductivity from Nonlocal Coulomb Repulsion in an Atomic Sn Layer Deposited onto a Si(111) Substrate. , 2021, Physical review letters.

[2]  R. Wiesendanger,et al.  Long-range focusing of magnetic bound states in superconducting lanthanum , 2020, Nature Communications.

[3]  S. Johnston,et al.  Superconductivity in a Hole-Doped Mott-Insulating Triangular Adatom Layer on a Silicon Surface. , 2019, Physical review letters.

[4]  M. Sigrist,et al.  Chiral superconductivity in heavy-fermion metal UTe2 , 2019, Nature.

[5]  Stuart Walker,et al.  Inversion , 2019, The Craft of Poetry.

[6]  M. Zahedifar,et al.  Phonon-induced electronic relaxation in a strongly correlated system: The Sn/Si(111) (3×3) adlayer revisited , 2019, Physical Review B.

[7]  E. Bauer,et al.  Pronounced drop of $^{17}$O NMR Knight shift in superconducting state of Sr$_2$RuO$_4$. , 2019 .

[8]  E. Bauer,et al.  Constraints on the superconducting order parameter in Sr2RuO4 from oxygen-17 nuclear magnetic resonance , 2019, Nature.

[9]  Thomas A. Maier,et al.  DCA++: A software framework to solve correlated electron problems with modern quantum cluster methods , 2019, Comput. Phys. Commun..

[10]  S. Johnston,et al.  Zero-bias anomaly in nanoscale hole-doped Mott insulators on a triangular silicon surface , 2017, 1712.02736.

[11]  P. Vilmercati,et al.  Realization of a Hole-Doped Mott Insulator on a Triangular Silicon Lattice. , 2017, Physical review letters.

[12]  Z. Zhong,et al.  Chiral d -wave superconductivity in a triangular surface lattice mediated by long-range interaction , 2017, 1710.03467.

[13]  Y. Maeno,et al.  Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4 , 2017, 1706.01942.

[14]  P. Vilmercati,et al.  Hidden phase in a two-dimensional Sn layer stabilized by modulation hole doping , 2017, Nature Communications.

[15]  A. Black‐Schaffer,et al.  Impurity bound states in fully gapped d-wave superconductors with subdominant order parameters , 2016, Scientific Reports.

[16]  C. Kallin,et al.  Chiral superconductors , 2015, Reports on progress in physics. Physical Society.

[17]  T. Cren,et al.  Coherent long-range magnetic bound states in a superconductor , 2015, Nature Physics.

[18]  B. Drevniok,et al.  Surface and near surface defects in δ-doped Si(1 1 1) , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[19]  Jun-Ho Lee,et al.  Antiferromagnetic superexchange mediated by a resonant surface state in Sn/Si(111) , 2014 .

[20]  Carsten Honerkamp,et al.  Chiral d-wave superconductivity in doped graphene , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[21]  Z. Meng,et al.  Unconventional superconductivity on the triangular lattice Hubbard model , 2013, 1304.7739.

[22]  A. Bostwick,et al.  Magnetic order in a frustrated two-dimensional atom lattice at a semiconductor surface , 2013, Nature Communications.

[23]  W. Hanke,et al.  Model Evidence of an Anisotropic Chiral d plus id-Wave Pairing State for the Water-Intercalated NaxCoO2 center dot yH(2)O Superconductor , 2013, 1301.5662.

[24]  A. Black‐Schaffer Edge properties and Majorana fermions in the proposed chiral d-wave superconducting state of doped graphene. , 2012, Physical review letters.

[25]  C. Kallin Chiral p-wave order in Sr2RuO4 , 2012, Reports on progress in physics. Physical Society.

[26]  Alexander A. Demkov,et al.  Advances and applications in the FIREBALL ab initio tight‐binding molecular‐dynamics formalism , 2011 .

[27]  Rahul Nandkishore,et al.  Chiral superconductivity from repulsive interactions in doped graphene , 2011, Nature Physics.

[28]  F. Lechermann,et al.  Realistic modeling of the electronic structure and the effect of correlations for Sn/Si(111) and Sn/Ge(111) surfaces , 2010, 1003.3224.

[29]  D. J. Scalapino,et al.  A common thread , 2010, 1002.2413.

[30]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[31]  Ziqiang Wang,et al.  Nodal d + id pairing and topological phases on the triangular lattice of Na(x)CoO(2).yH(2)O: evidence for an unconventional superconducting state. , 2007, Physical review letters.

[32]  D. Scalapino,et al.  Structure of the pairing interaction in the two-dimensional Hubbard model. , 2005, Physical review letters.

[33]  N. Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[34]  P. Jelínek,et al.  First-principles simulations of STM images: From tunneling to the contact regime , 2004 .

[35]  S. Rogge,et al.  Formation of atom wires on vicinal silicon. , 2004, Physical review letters.

[36]  A. Yazdani,et al.  Local Ordering in the Pseudogap State of the High-Tc Superconductor Bi2Sr2CaCu2O8+δ , 2004, Science.

[37]  H. Eisaki,et al.  Coexistence of periodic modulation of quasiparticle states and superconductivity in Bi2Sr2CaCu2O8+δ , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Z. Wang,et al.  Impurity and interface bound states in dx2-y2 + idxy and px + ipy superconductors , 2003, cond-mat/0305152.

[39]  R. Joynt,et al.  The superconducting phases of UPt 3 , 2002 .

[40]  F. Flores,et al.  Surface Soft Phonon and the × 3×3 Phase Transition in Sn/Ge(111) and Sn/Si(111) , 2001 .

[41]  C. C. Tsuei,et al.  Pairing symmetry in cuprate superconductors , 2000 .

[42]  F. Besenbacher,et al.  Fourier Transform–STM: determining the surface Fermi contour , 2000 .

[43]  N. Read,et al.  Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect , 1999, cond-mat/9906453.

[44]  M. Fisher,et al.  Spin quantum Hall effect in unconventional superconductors , 1999, cond-mat/9902062.

[45]  S. Goedecker,et al.  Relativistic separable dual-space Gaussian pseudopotentials from H to Rn , 1998, cond-mat/9803286.

[46]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[47]  C. Duke Semiconductor Surface Reconstruction: The Structural Chemistry of Two-Dimensional Surface Compounds. , 1996, Chemical reviews.

[48]  M. Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1995, Physical review. B, Condensed matter.

[49]  H. Löhneysen The superconducting phases of UPt3 , 1994 .

[50]  E. Kaxiras,et al.  Adsorption of boron on Si(111): Its effect on surface electronic states and reconstruction. , 1989, Physical review letters.

[51]  M. Dewar New mechanism for superconductivity , 1987 .

[52]  Venkatesh Narayanamurti,et al.  Direct measurement of quasiparticle-lifetime broadening in a strong-coupled superconductor , 1978 .

[53]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[54]  A. I. Rusinov Superconductivity near a paramagnetic impurity , 1969 .

[55]  Hiroyuki Shiba,et al.  Classical Spins in Superconductors , 1968 .

[56]  Philip W. Anderson,et al.  Theory of dirty superconductors , 1959 .

[57]  K. Cheng Theory of Superconductivity , 1948, Nature.

[58]  C. Kallin Chiral P-Wave Order in Sr 2 RuO 4 , 2012 .

[59]  P. Smith,et al.  Electronic structure of the Si(111)(3)(3)R30-B surface , 2002 .

[60]  Y. Luh BOUND STATE IN SUPERCONDUCTORS WITH PARAMAGNETIC IMPURITIES , 1965 .

[61]  P. Gennes Boundary Effects in Superconductors , 1964 .

[62]  P. Smith,et al.  Electronic structure of the Si „ 111 ... A 3 Ã A 3 R 30 °-B surface , 2022 .