TOF-SIMS in Cosmochemistry

Abstract Time-of-flight secondary ion mass spectrometry (TOF-SIMS) was introduced into cosmochemistry about a decade ago. Major advantages of TOF-SIMS compared to other ion microprobe techniques are (a) parallel detection of all secondary ions with one polarity in a single measurement—both polarities in subsequent analyses, (b) high lateral resolution, (c) sufficient mass resolution for separation of major mass interferences, and (d) little sample destruction. This combination makes TOF-SIMS highly suitable for the analysis especially of small samples, like interplanetary and presolar dust grains, as well as tiny inclusions within meteorites. Limitations of this technique are mainly referring to isotopic measurements and quantification. The possibility to measure molecular and atomic ion species simultaneously extends the applications of TOF-SIMS to the investigation of indigenous hydrocarbons in extraterrestrial material, which might have been essential for the formation of life. The present work gives an overview of TOF-SIMS in cosmochemistry, technical aspects as well as applications, principles of data evaluation and various results.

[1]  M. Zolensky,et al.  Collection and curation of interplanetary dust particles recovered from the stratosphere by NASA , 1994 .

[2]  R. L. Newburn,et al.  Comets in the post-Halley era , 1991 .

[3]  E. Scott,et al.  Origin of carbonate-magnetite-sulfide assemblages in Martian meteorite ALH84001. , 1999, Journal of geophysical research.

[4]  E. Anders,et al.  Interstellar graphite in meteorites , 1990, Nature.

[5]  T. Stephan,et al.  TOF-SIMS analysis of interplanetary dust , 1994 .

[6]  E. Zinner,et al.  Interstellar grains within interstellar grains , 1991 .

[7]  L. Allamandola INTERSTELLAR POLYCYCLIC AROMATIC HYDROCARBONS , 1999 .

[8]  R. Clayton,et al.  MOLYBDENUM ISOTOPIC COMPOSITION OF INDIVIDUAL PRESOLAR SILICON CARBIDE GRAINS FROM THE MURCHISON METEORITE , 1998 .

[9]  R. Cicerone Halogens in the atmosphere , 1981 .

[10]  A. Benninghoven Chemical Analysis of Inorganic and Organic Surfaces and Thin Films by Static Time‐of‐Flight Secondary Ion Mass Spectrometry (TOF‐SIMS) , 1994 .

[11]  L. Leshin,et al.  Oxygen isotopic abundances in calcium- aluminum-rich inclusions from ordinary chondrites: implications for nebular heterogeneity. , 1998, Science.

[12]  T. Stephan,et al.  Analysis of Stratospheric Interplanetary Dust Particles with TOF-SIMS, SEM, and TEM , 1992 .

[13]  R. Zare,et al.  Organic chemical analysis on a microscopic scale using two-step laser desorption/laser ionization mass spectrometry , 1991 .

[14]  John M. Hayes,et al.  Organic constituents of meteorites - A review. , 1967 .

[15]  W. Giger,et al.  Poly cyclic aromatic hydrocarbons in Recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis , 1980 .

[16]  A. Davis,et al.  Refractory inclusions in the prototypical CM chondrite, Mighei , 1994 .

[17]  J. Kissel,et al.  THE COMPOSITION OF COMETS , 1989, Origin and Evolution of Planetary and Satellite Atmospheres.

[18]  D. Mckay,et al.  Carbon abundance and silicate mineralogy of anhydrous interplanetary dust particles. , 1993, Geochimica et cosmochimica acta.

[19]  P. Fraundorf,et al.  Evidence for interstellar SiC in the Murray carbonaceous meteorite , 1987, Nature.

[20]  E. Anders,et al.  Pre-biotic organic matter from comets and asteroids , 1989, Nature.

[21]  F. Hawthorne Microprobe Techniques in the Earth Sciences , 1996, Mineralogical Magazine.

[22]  S. Messenger Oxygen Isotopic Imaging of Interplanetary Dust , 1998 .

[23]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[24]  R. Zare,et al.  Analysis of Polycyclic Aromatic Hydrocarbons in Seventeen Ordinary and Carbonaceous Chondrites , 1992 .

[25]  T. Stephan,et al.  Polycyclic Aromatic Hydrocarbons in Meteorites: Allan Hills 84001, Murchison, and Orgueil , 1999 .

[26]  F. Stadermann,et al.  SIMS chemical analysis of extended impact features from the trailing edge portion of experiment AO187-2 , 1992 .

[27]  Dale P. Cruikshank,et al.  Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets , 1988 .

[28]  G. Steigman,et al.  Production of Li, Be, and B in the early galaxy , 1992 .

[29]  F. Rietmeijer The bromine content of micrometeorites - Arguments for stratospheric contamination , 1993 .

[30]  D. Brownlee,et al.  Major element composition of stratospheric micrometeorites , 1989 .

[31]  K. Olive,et al.  Astrophysical 7Li as a product of Big Bang nucleosynthesis and galactic cosmic-ray spallation , 1992, Nature.

[32]  L. Allamandola PAHs, they're everywhere! , 1996 .

[33]  D. Brownlee,et al.  Natural and orbital debris particles on LDEF's trailing and forward-facing surfaces , 1995 .

[34]  A. Benninghoven,et al.  Surface investigation of solids by the statical method of secondary ion mass spectroscopy (SIMS) , 1973 .

[35]  D. Brownlee,et al.  Mg-Rich Olivine and Pyroxene Grains in Primitive Meteoritic Materials: Comparison with Crystalline Silicate Data from ISO , 1999 .

[36]  A. Benninghoven,et al.  Sputtered neutrals mass spectrometry of organic molecules using multiphoton postionization , 1992 .

[37]  A. Benninghoven,et al.  Developments in secondary ion mass spectroscopy and applications to surface studies , 1975 .

[38]  E. Jessberger,et al.  On the accuracy of element concentrations and masses of micron sized samples determined with the Heidelberg proton microprobe , 1997 .

[39]  R. Zare,et al.  Indigenous Polycyclic Aromatic Hydrocarbons in Circumstellar Graphite Grains from Primitive Meteorites , 1998 .

[40]  E. Anders,et al.  Interstellar grains in meteorites: I. Isolation of SiC, graphite and diamond; size distributions of SiC and graphite , 1994 .

[41]  B. Wopenka,et al.  Isotopic, optical, and trace element properties of large single SiC grains from the Murchison meteorite , 1992 .

[42]  G. Libourel,et al.  Boron partitioning in the upper mantle: An experimental and ion probe study , 1993 .

[43]  F. Stadermann,et al.  NANOSIMS: THE NEXT GENERATION ION PROBE FOR THE MICROANALYSIS OF EXTRATERRESTRIAL MATERIAL , 1999 .

[44]  P. Buseck,et al.  Transmission electron microscopy of the "LOW-CA" hydrated interplanetary dust particle , 1984 .

[45]  G. Moreels,et al.  Detection of a polycyclic aromatic molecule in comet P/Halley , 1994 .

[46]  Lucy Berthoud,et al.  ANALYSIS OF INTERPLANETARY DUST , 1994 .

[47]  C. Chyba,et al.  The origin of life in the solar system: current issues. , 1995, Annual review of earth and planetary sciences.

[48]  M. Zolensky Aqueous Alteration of Carbonaceous Chondrites: Evidence for Asteroidal Alteration , 1997 .

[49]  D. Mckay,et al.  Quantitative analyses of carbon in anhydrous and hydrated interplanetary dust particles , 1994 .

[50]  Frans J. M. Rietmeijer,et al.  Interplanetary dust particles , 1998 .

[51]  M. Zolensky,et al.  Workshop on Parent-Body and Nebular Modification of Chondritic Materials , 1997 .

[52]  Elmar K. Jessberger,et al.  Chemical Properties of Cometary Dust and A Note on Carbon Isotopes , 1991 .

[53]  H. Y. McSween,et al.  Epitaxial growth of nanophase magnetite in Martian meteorite Allan Hills 84001: Implications for biogenic mineralization , 1998, Meteoritics & planetary science.

[54]  M. Maurette,et al.  Petrology and geochemistry of Antarctic micrometeorites , 1994 .

[55]  Peter F. Arndt,et al.  Properties of Interplanetary Dust: Information from Collected Samples , 2001 .

[56]  T. Stephan,et al.  Correction of dead time effects in time‐of‐flight mass spectrometry , 1994 .

[57]  E. Zinner Cometary and interstellar dust grains: Analysis by ion microprobe mass spectrometry and other techniques , 1991 .

[58]  E. Scott,et al.  Carbonates in fractures of Martian meteorite Allan Hills 84001: Petrologic evidence for impact origin , 1998, Meteoritics & planetary science.

[59]  B. Nagy,et al.  A Microbiological Examination of Some Carbonaceous Chondrites , 1961, Nature.

[60]  Michael E. Zolensky,et al.  Correlated alteration effects in CM carbonaceous chondrites , 1996 .

[61]  D P Glavin,et al.  A search for endogenous amino acids in martian meteorite ALH84001. , 1998, Science.

[62]  L Becker,et al.  Polycyclic aromatic hydrocarbons (PAHs) in Antarctic Martian meteorites, carbonaceous chondrites, and polar ice , 1997, Optics & Photonics.

[63]  P. H. Warren,et al.  Petrologic evidence for low-temperature, possibly flood evaporitic origin of carbonates in the ALH84001 meteorite. , 1998, Journal of geophysical research.

[64]  Hans Oechsner,et al.  Secondary‐neutral microprobe with electron‐gas post‐ionization , 1993 .

[65]  G. Slodzian,et al.  Isotopic effect on the ionization probabilities in secondary ion emission , 1980 .

[66]  E. Anders,et al.  Organic Compounds in Meteorites , 1973, Science.

[67]  M. S. Matthews,et al.  Planetary Science. (Book Reviews: Origin and Evolution of Planetary and Satellite Atmospheres) , 1989 .

[68]  U. Ott Interstellar grains in meteorites , 1993, Nature.

[69]  D. Brownlee,et al.  Interplanetary Dust; A New Source of Extraterrestrial Material for Laboratory Studies , 1977 .

[70]  R. Zare,et al.  Evidence for the extraterrestrial origin of polycyclic aromatic hydrocarbons in the Martian meteorite ALH84001. , 1998, Faraday discussions.

[71]  E. Zinner Trends in the study of presolar dust grains from primitive meteorites , 1998 .

[72]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[73]  V. Berardi,et al.  Dead time correction of time distribution measurements , 1991 .

[74]  H. Werner,et al.  Charging of insulators by ion bombardment and its minimization for secondary ion mass spectrometry (SIMS) measurements , 1976 .

[75]  A. Benninghoven,et al.  Time-of-flight secondary ion mass spectrometry of insulators with pulsed charge compensation by low-energy electrons , 1989 .

[76]  E. Shock,et al.  Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars , 1999 .

[77]  J. Kissel,et al.  Pulsed operation of a liquid metal ion source , 1988 .

[78]  C. MeyerJr. Trace Element Analysis of Silicates by Ion Microprobe , 1979 .

[79]  E. Anders,et al.  Isotopic anomalies of Ne, Xe, and C in meteorites. II - Interstellar diamond and SiC: Carriers of exotic noble gases. III - Local and exotic noble gas components and their interrelations , 1988 .

[80]  A. Benninghoven,et al.  High mass resolution surface imaging with a time‐of‐flight secondary ion mass spectroscopy scanning microprobe , 1991 .

[81]  T. Stephan,et al.  Surface analysis of stratospheric dust particles , 1999 .

[82]  Peter R. Buseck,et al.  Matrix mineralogy of the Orgueil CI carbonaceous chondrite , 1988 .

[83]  G. Wasserburg,et al.  Extreme ^(26)Mg and ^(17)O enrichments in an Orgueil corundum: Identification of a presolar oxide grain , 1994 .

[84]  J. Bada,et al.  Geochromatography on the parent body of the carbonaceous chondrite Ivuna , 1991 .

[85]  H. P. Robertson,et al.  Dynamical Effects of Radiation in the Solar System , 1937 .

[86]  A. Benninghoven,et al.  Static SIMS applications—From silicon single crystal oxidation to DNA sequencing , 1985 .

[87]  R. Zare,et al.  Microscopic organic analysis using two-step laser mass spectrometry: application to meteoritic acid residues , 1992 .

[88]  F. Stadermann,et al.  SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2 , 1992 .

[89]  W. Fowler,et al.  ON THE ORIGIN OF LIGHT ELEMENTS , 1973 .

[90]  D. Stöffler,et al.  Accretionary dust mantles in CM chondrites: Evidence for solar nebula processes , 1992 .

[91]  E. Jessberger,et al.  Structural and chemical modifications of microsamples induced during PIXE analysis , 1996 .

[92]  A. Bischoff,et al.  Carbonates in CI chondrites: clues to parent body evolution. , 1996, Geochimica et cosmochimica acta.

[93]  G. Crozaz,et al.  A method for the quantitative measurement of rare earth elements in the ion microprobe , 1986 .

[94]  Y. Langevin,et al.  Composition of comet Halley dust particles from Vega observations , 1986 .

[95]  E. Anders,et al.  Interstellar SiC in the Murchison and Murray meteorites - Isotopic composition of Ne, Xe, Si, C, and N , 1989 .

[96]  A. Bischoff,et al.  Aqueous alteration of carbonaceous chondrites: Evidence for preaccretionary alteration—A review , 1998 .

[97]  C. Chyba,et al.  Cometary organics but no evidence for bacteria , 1987, Nature.

[98]  A. Benninghoven,et al.  Secondary ion mass spectrometry : SIMS V : proceedings of the fifth international conference, Washington, DC, September 30-October 4, 1985 , 1986 .

[99]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[100]  E. Steel,et al.  Interstellar diamonds in meteorites , 1987, Nature.

[101]  E. Anders,et al.  Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite , 1988, Nature.

[102]  E. Anders,et al.  Isotopic anomalies of Ne, Xe, and C in meteorites. III. Local and exotic noble gas components and their interrelations. , 1988 .

[103]  H. Reeves,et al.  PRODUCTION OF THE ELEMENTS Li, Be, AND B BY GALACTIC COSMIC RAYS IN SPACE AND ITS RELATION WITH STELLAR OBSERVATIONS. , 1971 .

[104]  H. McSween,et al.  Magnetite whiskers and platelets in the ALH84001 Martian meteorite: evidence of vapor phase growth. , 1996, Geochimica et cosmochimica acta.

[105]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[106]  P. Buseck,et al.  Indicators of aqueous alteration in CM carbonaceous chondrites: Microtextures of a layered mineral containing Fe, S, O and Ni , 1985 .

[107]  F. R. Krueger,et al.  Composition of comet Halley dust particles from Giotto observations , 1986 .

[108]  J. Armstrong,et al.  Primitive material surviving in chondrites: refractory inclusions. , 1988 .

[109]  D. Brownlee,et al.  An infrared spectral match between GEMS and interstellar grains. , 1999, Science.

[110]  E. Jessberger,et al.  The volatile element enrichment of chondritic interplanetary dust particles , 1992 .

[111]  G. Flynn,et al.  The Abundance Pattern of Elements Having Low Nebular Condensation Temperatures in Interplanetary Dust Particles: Evidence for a New Chemical Type of Chondritic Material , 1996 .

[112]  J. Bohsung,et al.  The new Heidelberg proton microprobe: The success of a minimal concept , 1995 .

[113]  C. Chyba,et al.  Cometary delivery of organic molecules to the early Earth. , 1990, Science.

[114]  B. Schueler Microscope imaging by time-of-flight secondary ion mass spectrometry , 1992 .

[115]  E. Jessberger,et al.  Refractory Inclusions in the Kaidun Carbonaceous Chondrite Breccia , 1994 .

[116]  G. Wetherill Origin and evolution of planetary and satellite atmospheres , 1990 .

[117]  J. Bradley Nanometer-scale mineralogy and petrography of fine-grained aggregates in anhydrous interplanetary dust particles , 1994 .

[118]  S. Dermott,et al.  Sources of Interplanetary Dust , 1996 .

[119]  Michael E. Zolensky,et al.  Stardust: Comet and interstellar dust sample return mission , 2003 .

[120]  P. Hoppe,et al.  Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison carbonaceous chondrite , 1994 .

[121]  J. Klačka Dust particle in the solar gravitational and electromagnetic fields , 1994 .

[122]  P. Hoppe,et al.  Type II Supernova Matter in a Silicon Carbide Grain from the Murchison Meteorite , 1996, Science.

[123]  J. Beck,et al.  Isotopic evidence for a terrestrial source of organic compounds found in martian meteorites Allan Hills 84001 and Elephant Moraine 79001. , 1998, Science.

[124]  E. Jessberger,et al.  High resolution PIXE analyses of interplanetary dust particles with the new Heidelberg proton microprobe , 1995 .

[125]  T. Stephan,et al.  The Lateral Distribution of Polycyclic Aromatic Hydrocarbons in Allan Hills 84001: Implications for Their Origin , 1998 .

[126]  E. Jessberger,et al.  The elemental abundances in interplanetary dust particles , 1996 .

[127]  P. Hoppe,et al.  Interstellar SiC with unusual isotopic compositions - Grains from a supernova? , 1992 .

[128]  N. Warmoltz,et al.  Beam techniques for the analysis of poorly conducting materials , 1984 .

[129]  M. Pellin,et al.  Femtosecond laser postionization of sputtered and laser desorbed atoms , 1995 .

[130]  C. Joblin,et al.  Solid interstellar matter : the ISO revolution : Les Houches Workshop, February 2-6, 1998 , 1999 .

[131]  J. Lawless,et al.  Organic compounds in meteorites. , 1980, Life sciences and space research.

[132]  P. Sigmund Theory of Sputtering. I. Sputtering Yield of Amorphous and Polycrystalline Targets , 1969 .

[133]  K. Kvenvolden,et al.  Evidence for Extraterrestrial Amino-acids and Hydrocarbons in the Murchison Meteorite , 1970, Nature.

[134]  Leonard I. Schiff,et al.  Statistical Analysis of Counter Data , 1936 .

[135]  L. Nittler,et al.  Interstellar oxide grains from the Tieschitz ordinary chondrite , 1994, Nature.

[136]  L. Leshin,et al.  Oxygen Isotopic Constraints on the Genesis of Carbonates from Martian Meteorite ALH84001 , 1998 .

[137]  F. R. Krueger,et al.  Ion formation by impact of fast dust particles and comparison with related techniques , 1987 .

[138]  E. Anders,et al.  Meteorites and the Early Solar System , 1971 .

[139]  C. Pillinger,et al.  Isotopic anomalies of Ne, Xe, and C in meteorites. I. Separation of carriers by density and chemical resistance , 1988 .

[140]  G. Flynn,et al.  Element Abundances in Stratospheric Cosmic Dust: Indications for a New Chemical Type of Chondritic Material , 1992 .

[141]  E. Anders,et al.  Large amounts of extinct 26AI in interstellar grains from the Murchison meteorite , 1991, Nature.

[142]  John F. Kerridge,et al.  Meteorites and the early solar system , 1988 .

[143]  C. Chapman,et al.  ASTEROIDS AND METEORITES , 2021, Disturbing the Solar System.

[144]  Michael E. Zolensky,et al.  The Stardust Mission: Returning Comet Samples to Earth , 1997 .

[145]  A. Treiman,et al.  Bulk and stable isotopic compositions of carbonate minerals in Martian meteorite Allan Hills 84001: No proof of high formation temperature , 1998, Meteoritics & planetary science.

[146]  A. Benninghoven,et al.  Design and performance of a reflectron based time‐of‐flight secondary ion mass spectrometer with electrodynamic primary ion mass separation , 1987 .

[147]  W. Compston,et al.  Ion microprobe identification of 4,100–4,200 Myr-old terrestrial zircons , 1983, Nature.

[148]  R N Zare,et al.  Spatially Resolved Organic Analysis of the Allende Meteorite , 1989, Science.

[149]  J. Greenberg The cosmic dust connection , 1996 .

[150]  A. Davis,et al.  New instrument for microbeam analysis incorporating submicron imaging and resonance ionization mass spectrometry , 1995 .

[151]  W. Compston,et al.  U‐Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass‐resolution ion microprobe , 1984 .

[152]  M. Zolensky,et al.  Composition and frequency of impact residues detected on LDEF surfaces , 1993 .

[153]  F. R. Krueger,et al.  The organic component in dust from comet Halley as measured by the PUMA mass spectrometer on board Vega 1 , 1987, Nature.

[154]  G. Crozaz,et al.  Ion probe determinations of the rare earth concentrations of individual meteoritic phosphate grains , 1985 .

[155]  T. See,et al.  Projectile compositions and modal frequencies on the chemistry of micrometeoroids LDEF experiment , 1993 .

[156]  J. Oró,et al.  Amino-acids, Aliphatic and Aromatic Hydrocarbons in the Murchison Meteorite , 1971, Nature.

[157]  E. Anders,et al.  Interstellar Grains in Primitive Meteorites: Diamond, Silicon Carbide, and Graphite , 1993 .

[158]  S. Sandford,et al.  Interplanetary dust particles. , 2003 .

[159]  J L Bada,et al.  The origin of organic matter in the Martian meteorite ALH84001. , 1999, Earth and planetary science letters.

[160]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[161]  R. Zare,et al.  Application of Two-Step Laser Mass Spectrometry to Cosmogeochemistry: Direct Analysis of Meteorites , 1988, Science.

[162]  P. Hoppe,et al.  The Preparation and Preliminary Characterisation of Eight Geological MPI‐DING Reference Glasses for In‐Situ Microanalysis , 2000 .

[163]  P Sigmund,et al.  スパッタの理論 I 非晶質のスパッタ収量と多結晶ターゲット , 1969 .

[164]  K. McKeegan,et al.  Ion microprobe isotopic measurements of individual interplanetary dust particles , 1985 .

[165]  R. N. Zare,et al.  Evaluating the Evidence for Past Life on Mars , 1996, Science.

[166]  B. A. Mamyrin,et al.  The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution , 1973 .

[167]  C. E. Young,et al.  Sensitive, low damage surface analysis using resonance ionization of sputtered atoms , 1986 .

[168]  Ronald A. Hites,et al.  The global distribution of polycyclic aromatic hydrocarbons in recent sediments , 1978 .

[169]  R. Sagdeev,et al.  Laser-ionization studies with the technical models of the LIMA-D/PHOBOS experiment , 1990 .

[170]  W. Giger,et al.  Polycyclic aromatic hydrocarbons in Recent lake sediments—I. Compounds having anthropogenic origins , 1980 .

[171]  Jochen Kissel,et al.  Aspects of the major element composition of Halley's dust , 1988, Nature.

[172]  C. Ponnamperuma,et al.  Aromatic Hydrocarbons in the Murchison Meteorite , 1971, Science.

[173]  P. Hoppe,et al.  Silicon Nitride from Supernovae , 1995 .

[174]  G. S. Hurst,et al.  Resonance ionization spectroscopy and one-atom detection , 1979 .

[175]  H. McSween,et al.  No ‘nanofossils’ in martian meteorite , 1997, Nature.

[176]  C. Engrand,et al.  A new carbon-rich phase (COPS) in Antarctic micrometeorites , 1993 .

[177]  M. de Vries,et al.  A search for C60 in carbonaceous chondrites. , 1993, Geochimica et cosmochimica acta.

[178]  D. A. Reed,et al.  A time-of-flight secondary ion microscope , 1990 .

[179]  T. Stephan,et al.  New TOF-SIMS Results on Hydrated Interplanetary Dust Particles , 1994 .

[180]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[181]  A. Benninghoven,et al.  Quantification of metal trace contaminants on Si wafer surfaces by Laser‐SNMS and TOF‐SIMS using sputter deposited submonolayer standards , 1996 .

[182]  T. Stephan,et al.  SYMPLECTIC EXSOLUTIONS IN OLIVINE FROM THE MARTIAN METEORITE CHASSIGNY: EVIDENCE FOR SLOW COOLING UNDER HIGHLY OXIDIZING CONDITIONS , 1998 .