Short Tops and Semistable Degenerations
暂无分享,去创建一个
Ryan Davis | Ursula Whitcher | Charles Doran | Adam Gewiss | Andrey Novoseltsev | Dmitri Skjorshammer | Alexa Syryczuk | C. Doran | U. Whitcher | Dmitri Skjorshammer | Andrey Novoseltsev | Ryan Davis | Adam Gewiss | Alexa Syryczuk
[1] Sheldon Katz,et al. Mirror symmetry and algebraic geometry , 1999 .
[2] Kurt Mehlhorn,et al. Checking geometric programs or verification of geometric structures , 1996, SCG '96.
[3] A. Constantin,et al. An Abundance of K3 Fibrations from Polyhedra with Interchangeable Parts , 2012, 1207.4792.
[4] Semistable Degeneration of Toric Varieties and Their Hypersurfaces , 2001, math/0110091.
[5] David Mumford,et al. Toroidal Embeddings I , 1973 .
[6] V. Kulikov. Degenerations of k3 Surfaces and Enriques Surfaces , 1977 .
[7] M. Kreuzer,et al. Toric K3-fibred Calabi-Yau manifolds with del Pezzo divisors for string compactifications , 2011, 1107.0383.
[8] Mikkel Obro. An algorithm for the classification of smooth Fano polytopes , 2007, 0704.0049.
[9] D. Morrison. Chapter VI. THE CLEMENS-SCHMID EXACT SEQUENCE AND APPLICATIONS , 1984 .
[10] A. Landman. On the Picard-Lefschetz transformation for algebraic manifolds acquiring general singularities , 1973 .
[11] F. N. Cole. THE AMERICAN MATHEMATICAL SOCIETY. , 1910, Science.
[12] A. Grassi,et al. Weierstrass models of elliptic toric K3 hypersurfaces and symplectic cuts , 2012, 1201.0930.
[13] B. M. Fulk. MATH , 1992 .
[14] Lattice polarized toric K3 surfaces , 2004, hep-th/0409290.
[15] Affine Kac-Moody algebras, CHL strings and the classification of tops , 2003, hep-th/0303218.
[16] U. Persson. On Degenerations of Algebraic Surfaces , 1977 .