Parameter Sensitivity Visualization for DTI Fiber Tracking

Fiber tracking of diffusion tensor imaging (DTI) data offers a unique insight into the three-dimensional organisation of white matter structures in the living brain. However, fiber tracking algorithms require a number of user-defined input parameters that strongly affect the output results. Usually the fiber tracking parameters are set once and are then re-used for several patient datasets. However, the stability of the chosen parameters is not evaluated and a small change in the parameter values can give very different results. The user remains completely unaware of such effects. Furthermore, it is difficult to reproduce output results between different users. We propose a visualization tool that allows the user to visually explore how small variations in parameter values affect the output of fiber tracking. With this knowledge the user cannot only assess the stability of commonly used parameter values but also evaluate in a more reliable way the output results between different patients. Existing tools do not provide such information. A small user evaluation of our tool has been done to show the potential of the technique.

[1]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[2]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[3]  Daniel Weiskopf,et al.  Texture-based visualization of uncertainty in flow fields , 2005, VIS 05. IEEE Visualization, 2005..

[4]  J. Eyton,et al.  Complementary‐Color, Two‐Variable Maps , 1984 .

[5]  Randy L. Gollub,et al.  Reproducibility of quantitative tractography methods applied to cerebral white matter , 2007, NeuroImage.

[6]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[7]  Gareth J. Barker,et al.  From diffusion tractography to quantitative white matter tract measures: a reproducibility study , 2003, NeuroImage.

[8]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[9]  Alex T. Pang,et al.  Glyphs for Visualizing Uncertainty in Vector Fields , 1996, IEEE Trans. Vis. Comput. Graph..

[10]  Penny Rheingans Task-based color scale design , 2000, Applied Imaging Pattern Recognition.

[11]  David H. Laidlaw,et al.  An Introduction to Visualization of Diffusion Tensor Imaging and Its Applications , 2006, Visualization and Processing of Tensor Fields.

[12]  Carlo Pierpaoli,et al.  Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach , 2005, Magnetic resonance in medicine.

[13]  Helwig Hauser,et al.  Interactive Feature Specification for Focus+Context Visualization of Complex Simulation Data , 2003, VisSym.

[14]  David H. Laidlaw,et al.  Quantitative tractography metrics of white matter integrity in diffusion-tensor MRI , 2008, NeuroImage.

[15]  Andrew L. Alexander,et al.  An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations , 2003, NeuroImage.

[16]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[17]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[18]  David H. Laidlaw,et al.  Interactive volume rendering of thin thread structures within multivalued scientific data sets , 2004, IEEE Transactions on Visualization and Computer Graphics.

[19]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. Beaulieu,et al.  The basis of anisotropic water diffusion in the nervous system – a technical review , 2002, NMR in biomedicine.

[21]  Samuel S. Silva,et al.  There is More to Color Scales than Meets the Eye: A Review on the Use of Color in Visualization , 2007, 2007 11th International Conference Information Visualization (IV '07).

[22]  K. Kiuchi,et al.  Fractional Anisotropy–Threshold Dependence in Tract-Based Diffusion Tensor Analysis: Evaluation of the Uncinate Fasciculus in Alzheimer Disease , 2009, American Journal of Neuroradiology.

[23]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[24]  Brian A. Wandell,et al.  800Exploration of the brain's white matter pathways with dynamic queries , 2004, IEEE Visualization 2004.

[25]  Anders Ynnerman,et al.  Uncertainty Visualization in Medical Volume Rendering Using Probabilistic Animation , 2007, IEEE Transactions on Visualization and Computer Graphics.

[26]  Gordon L. Kindlmann,et al.  Tensorlines: advection-diffusion based propagation through diffusion tensor fields , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[27]  Charl P. Botha,et al.  Fast and reproducible fiber bundle selection in DTI visualization , 2005 .

[28]  Alex T. Pang,et al.  UFLOW: visualizing uncertainty in fluid flow , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[29]  Markus Hadwiger,et al.  Interactive Volume Exploration for Feature Detection and Quantification in Industrial CT Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[30]  Arie E. Kaufman,et al.  Case study: visualization of particle track data , 2001, Proceedings Visualization, 2001. VIS '01..

[31]  Prostitution In Nevada,et al.  ANNALS of the Association of American Geographers , 1974 .

[32]  Penny Rheingans,et al.  Point-based probabilistic surfaces to show surface uncertainty , 2004, IEEE Transactions on Visualization and Computer Graphics.

[33]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.