Reasoning about actions: a model-theoretic approach

A knowledge-based agent reasons with its knowledge and answers queries while performing various tasks. We consider the case where we describe the agent's knowledge in a propositional fragment of the situation calculus and queries in a fragment of ID-logic, the extension of first-order logic with inductive definitions. This fragment of ID-logic is equivalently as expressive as the alternation-free p-calculus. We formulate the agent's reasoning process as the following question: does the representation T of the agent's knowledge logically entail the query 4 (i.e., T k +)? We provide an efficient algorithm for this task, using a modeltheoretic approach: we construct from T a canonical model gT of the agent's knowledge and ask whether zT satisfies 4. Using this approach, the agent can answer the query in time linear with respect to both the size of T and the size of 4.

[1]  Dexter Kozen,et al.  RESULTS ON THE PROPOSITIONAL’p-CALCULUS , 2001 .

[2]  Victor W. Marek,et al.  Logic programming revisited , 2001, ACM Trans. Comput. Log..

[3]  Michael R. Genesereth,et al.  Logical foundations of artificial intelligence , 1987 .

[4]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[5]  Raymond Reiter,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2001 .

[6]  Hector J. Levesque,et al.  ConGolog, a concurrent programming language based on the situation calculus , 2000, Artif. Intell..

[7]  Eugenia Ternovskaia,et al.  Automata theory for reasoning about actions , 1999, IJCAI 1999.

[8]  Klaus Schneider,et al.  Verification of Reactive Systems: Formal Methods and Algorithms , 2003 .

[9]  Igor Walukiewicz,et al.  Guarded fixed point logic , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[10]  Martin Otto,et al.  Bisimulation invariance and finite models , 2006 .

[11]  Igor Walukiewicz,et al.  On the Expressive Completeness of the Propositional mu-Calculus with Respect to Monadic Second Order Logic , 1996, CONCUR.

[12]  Yongmei Liu A hoare-style proof system for robot programs , 2002, AAAI/IAAI.

[13]  Georg Gottlob,et al.  Datalog LITE: a deductive query language with linear time model checking , 2002, TOCL.

[14]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[15]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[16]  Raymond Reiter,et al.  The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression , 1991, Artificial and Mathematical Theory of Computation.

[17]  Michel Minoux,et al.  LTUR: A Simplified Linear-Time Unit Resolution Algorithm for Horn Formulae and Computer Implementation , 1988, Inf. Process. Lett..

[18]  Randy Goebel,et al.  Computational intelligence - a logical approach , 1998 .

[19]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[20]  Alon Itai,et al.  Unification as a Complexity Measure for Logic Programming , 1987, J. Log. Program..

[21]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[22]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[23]  Ernst-Rüdiger Olderog,et al.  Verification of Sequential and Concurrent Programs , 1997, Graduate Texts in Computer Science.

[24]  Paolo Traverso,et al.  Automated planning - theory and practice , 2004 .

[25]  J. McCarthy Situations, Actions, and Causal Laws , 1963 .

[26]  Ray Reiter,et al.  On knowledge-based programming with sensing in the situation calculus , 2001, ACM Trans. Comput. Log..

[27]  Valentin Goranko,et al.  Logic in Computer Science: Modelling and Reasoning About Systems , 2007, J. Log. Lang. Inf..

[28]  Hector J. Levesque,et al.  Tractable Reasoning in First-Order Knowledge Bases with Disjunctive Information , 2005, AAAI.

[29]  Jean H. Gallier,et al.  Linear-Time Algorithms for Testing the Satisfiability of Propositional Horn Formulae , 1984, J. Log. Program..

[30]  Martin Otto,et al.  Back and forth between guarded and modal logics , 2002, TOCL.

[31]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[32]  Allen Van Gelder,et al.  The Alternating Fixpoint of Logic Programs with Negation , 1993, J. Comput. Syst. Sci..

[33]  Herbert B. Enderton,et al.  A mathematical introduction to logic , 1972 .

[34]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[35]  Georg Gottlob,et al.  Fixed-Parameter Complexity in AI and Nonmonotonic Reasoning , 1999, LPNMR.

[36]  Hector J. Levesque,et al.  The cognitive agents specification language and verification environment for multiagent systems , 2002, AAMAS '02.

[37]  Sally Popkorn First Steps in Modal Logic , 1995 .

[38]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[39]  Marco Cadoli Tractable Reasoning in Artificial Intelligence , 1995, Lecture Notes in Computer Science.

[40]  Eugenia Ternovska,et al.  Inductive situation calculus , 2004, Artif. Intell..

[41]  Craig Boutilier,et al.  Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.

[42]  Marvin Minsky,et al.  Semantic Information Processing , 1968 .

[43]  Eugenia Ternovska,et al.  A Logic of Non-monotone Inductive Definitions and Its Modularity Properties , 2004, LPNMR.

[44]  Melvin Fitting,et al.  Fixpoint Semantics for Logic Programming a Survey , 2001, Theor. Comput. Sci..