Some Identities on the Poly-Genocchi Polynomials and Numbers
暂无分享,去创建一个
[1] On a Class of Analytic Functions , 1905 .
[2] Taekyun Kim,et al. Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials , 2020 .
[3] A. Jonquière,et al. Note sur la série $\sum _{n=1}^{\infty } \frac{x^n}{n^s}$ , 1889 .
[4] S. Rahimi,et al. A Complementary Column Generation Approach for the Graph Equipartition Problem , 2020 .
[5] T. Kim,et al. A Note on a New Type of Degenerate Bernoulli Numbers , 2020 .
[7] Dae San Kim,et al. Degenerate polyexponential functions and degenerate Bell polynomials , 2020, Journal of Mathematical Analysis and Applications.
[8] Dae San Kim,et al. A note on degenerate Genocchi and poly-Genocchi numbers and polynomials , 2020 .
[9] Taekyun Kim,et al. A Note on Central Bell Numbers and Polynomials , 2020 .
[10] Masanobu Kaneko,et al. On Poly-Bernoulli numbers , 1999 .
[11] Taekyun Kim,et al. Degenerate binomial coefficients and degenerate hypergeometric functions , 2020 .
[12] Don Zagier,et al. The Bloch-Wigner-Ramakrishnan polylogarithm function , 1990 .
[13] Lee-Chae Jang,et al. Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae–Stirling numbers , 2020, Advances in Difference Equations.
[14] Taekyun Kim,et al. A Note on Polyexponential and Unipoly Functions , 2019, Russian Journal of Mathematical Physics.
[15] Taekyun Kim,et al. p-Adic integral on $\mathbb{Z}_{p}$ associated with degenerate Bernoulli polynomials of the second kind , 2020 .
[16] Taekyun Kim,et al. Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.
[17] Dae San Kim,et al. Some Relations of Two Type 2 Polynomials and Discrete Harmonic Numbers and Polynomials , 2020, Symmetry.