Some Identities on the Poly-Genocchi Polynomials and Numbers

Recently, Kim-Kim (2019) introduced polyexponential and unipoly functions. By using these functions, they defined type 2 poly-Bernoulli and type 2 unipoly-Bernoulli polynomials and obtained some interesting properties of them. Motivated by the latter, in this paper, we construct the poly-Genocchi polynomials and derive various properties of them. Furthermore, we define unipoly Genocchi polynomials attached to an arithmetic function and investigate some identities of them.

[1]  On a Class of Analytic Functions , 1905 .

[2]  Taekyun Kim,et al.  Degenerate polyexponential functions and type 2 degenerate poly-Bernoulli numbers and polynomials , 2020 .

[3]  A. Jonquière,et al.  Note sur la série $\sum _{n=1}^{\infty } \frac{x^n}{n^s}$ , 1889 .

[4]  S. Rahimi,et al.  A Complementary Column Generation Approach for the Graph Equipartition Problem , 2020 .

[5]  T. Kim,et al.  A Note on a New Type of Degenerate Bernoulli Numbers , 2020 .

[7]  Dae San Kim,et al.  Degenerate polyexponential functions and degenerate Bell polynomials , 2020, Journal of Mathematical Analysis and Applications.

[8]  Dae San Kim,et al.  A note on degenerate Genocchi and poly-Genocchi numbers and polynomials , 2020 .

[9]  Taekyun Kim,et al.  A Note on Central Bell Numbers and Polynomials , 2020 .

[10]  Masanobu Kaneko,et al.  On Poly-Bernoulli numbers , 1999 .

[11]  Taekyun Kim,et al.  Degenerate binomial coefficients and degenerate hypergeometric functions , 2020 .

[12]  Don Zagier,et al.  The Bloch-Wigner-Ramakrishnan polylogarithm function , 1990 .

[13]  Lee-Chae Jang,et al.  Jindalrae and Gaenari numbers and polynomials in connection with Jindalrae–Stirling numbers , 2020, Advances in Difference Equations.

[14]  Taekyun Kim,et al.  A Note on Polyexponential and Unipoly Functions , 2019, Russian Journal of Mathematical Physics.

[15]  Taekyun Kim,et al.  p-Adic integral on $\mathbb{Z}_{p}$ associated with degenerate Bernoulli polynomials of the second kind , 2020 .

[16]  Taekyun Kim,et al.  Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus , 2019, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[17]  Dae San Kim,et al.  Some Relations of Two Type 2 Polynomials and Discrete Harmonic Numbers and Polynomials , 2020, Symmetry.