暂无分享,去创建一个
[1] Donald E. Knuth,et al. Literate Programming , 1984, Comput. J..
[2] Cezary Kaliszyk,et al. FEMaLeCoP: Fairly Efficient Machine Learning Connection Prover , 2015, LPAR.
[3] Carsten Lutz,et al. Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.
[4] Christoph Wernhard. Computing with Logic as Operator Elimination: The ToyElim System , 2011, INAP/WLP.
[5] W. Ackermann. Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .
[6] Dov M. Gabbay,et al. Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.
[7] William McCune. Un-Skolemizing Clause Sets , 1988, Inf. Process. Lett..
[8] Renate A. Schmidt,et al. The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..
[9] Fangzhen Lin,et al. On strongest necessary and weakest sufficient conditions , 2000, Artif. Intell..
[10] Victor Vianu,et al. Views and queries: Determinacy and rewriting , 2010, TODS.
[11] Sergiu Rudeanu. Boolean functions and equations , 1974 .
[12] Daniel Kroening,et al. Beyond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic , 2011, VMCAI.
[13] Michael Benedikt,et al. Generating Plans from Proofs: The Interpolation-based Approach to Query Reformulation , 2016, Synthesis Lectures on Data Management.
[14] Andrzej Szalas. On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..
[15] Carsten Lutz,et al. Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.
[16] James P. Delgrande,et al. A Knowledge Level Account of Forgetting , 2017, J. Artif. Intell. Res..
[17] Christoph Wernhard,et al. Craig Interpolation and Access Interpolation with Clausal First-Order Tableaux , 2018, ArXiv.
[18] Cezary Kaliszyk,et al. Efficient Low-Level Connection Tableaux , 2015, TABLEAUX.
[19] Christoph Wernhard,et al. The Boolean Solution Problem from the Perspective of Predicate Logic (Abstract) , 2017, SOQE.
[20] Patrick Doherty,et al. Computing Strongest Necessary and Weakest Sufficient Conditions of First-Order Formulas , 2001, IJCAI.
[21] Leopold Löwenheim. Über Möglichkeiten im Relativkalkül , 1915 .
[22] Patrick Doherty,et al. Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.
[23] Björn Pelzer,et al. System Description: E-KRHyper , 2007, CADE.
[24] Willem Conradie,et al. On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.
[25] Boris Konev,et al. Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications to Logical Difference , 2014, KR.
[26] Daniel Kroening,et al. An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic , 2010, IJCAR.
[27] J. Gustafsson. An Implementation and Optimization of an Algorithm for Reducing Formulae in Second-Order Logic , 1996 .
[28] William Craig,et al. Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory , 1957, Journal of Symbolic Logic.
[29] Christoph Wernhard. Projection and scope-determined circumscription , 2012, J. Symb. Comput..
[30] Patrick Koopmann,et al. Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.
[31] Tom Schrijvers,et al. Under Consideration for Publication in Theory and Practice of Logic Programming Swi-prolog , 2022 .
[32] Christoph Wernhard,et al. Second-Order Quantifier Elimination on Relational Monadic Formulas - A Basic Method and Some Less Expected Applications , 2015, TABLEAUX.
[33] Andrei Voronkov,et al. Interpolation and Symbol Elimination in Vampire , 2010, IJCAR.
[34] Ian Horrocks,et al. Modular Reuse of Ontologies: Theory and Practice , 2008, J. Artif. Intell. Res..
[35] Jens Otten. Restricting backtracking in connection calculi , 2010, AI Commun..
[36] David Toman,et al. Fundamentals of Physical Design and Query Compilation , 2011, Fundamentals of Physical Design and Query Compilation.
[37] R. Reiter,et al. Forget It ! , 1994 .
[38] Daniel Weller,et al. Boolean unification with predicates , 2017, J. Log. Comput..
[39] C. Siegel. Vorlesungen über die Algebra der Logik , 1907 .
[40] Andrei Voronkov,et al. Vinter: A Vampire-Based Tool for Interpolation , 2012, APLAS.
[41] P. Koopmann,et al. Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .
[42] Melvin Fitting,et al. First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.
[43] Mark E. Stickel. A prolog Technology Theorem Prover: Implementation by an Extended Prolog Compiler , 1986, CADE.
[44] Christoph Wernhard,et al. Abduction in Logic Programming as Second-Order Quantifier Elimination , 2013, FroCos.
[45] Christoph Wernhard,et al. The PIE Environment for First-Order-Based Proving, Interpolating and Eliminating , 2016, PAAR@IJCAR.
[46] Heinrich Behmann,et al. Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .
[47] Reinhold Letz. First-Order Tableau Methods , 1999 .
[48] H. Bedmann,et al. Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .
[49] Dov M. Gabbay,et al. Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.
[50] Michael Benedikt,et al. Reformulating Queries: Theory and Practice , 2017, IJCAI.
[51] Cadence Berkeley Labs. Applications of Craig Interpolants in Model Checking , 2005 .
[52] Christoph Wernhard,et al. Semantic Knowledge Partitioning , 2004, JELIA.
[53] Kenneth L. McMillan. Interpolation and Model Checking , 2018, Handbook of Model Checking.
[54] William Craig,et al. Linear reasoning. A new form of the Herbrand-Gentzen theorem , 1957, Journal of Symbolic Logic.