PIE - Proving, Interpolating and Eliminating on the Basis of First-Order Logic

PIE is a Prolog-embedded environment for automated reasoning on the basis of first-order logic. It includes a versatile formula macro system and supports the creation of documents that intersperse macro definitions, reasoner invocations and LaTeX-formatted natural language text. Invocation of various reasoners is supported: External provers as well as sub-systems of PIE, which include preprocessors, a Prolog-based first-order prover, methods for Craig interpolation and methods for second-order quantifier elimination.

[1]  Donald E. Knuth,et al.  Literate Programming , 1984, Comput. J..

[2]  Cezary Kaliszyk,et al.  FEMaLeCoP: Fairly Efficient Machine Learning Connection Prover , 2015, LPAR.

[3]  Carsten Lutz,et al.  Did I Damage My Ontology? A Case for Conservative Extensions in Description Logics , 2006, KR.

[4]  Christoph Wernhard Computing with Logic as Operator Elimination: The ToyElim System , 2011, INAP/WLP.

[5]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[6]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[7]  William McCune Un-Skolemizing Clause Sets , 1988, Inf. Process. Lett..

[8]  Renate A. Schmidt,et al.  The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..

[9]  Fangzhen Lin,et al.  On strongest necessary and weakest sufficient conditions , 2000, Artif. Intell..

[10]  Victor Vianu,et al.  Views and queries: Determinacy and rewriting , 2010, TODS.

[11]  Sergiu Rudeanu Boolean functions and equations , 1974 .

[12]  Daniel Kroening,et al.  Beyond Quantifier-Free Interpolation in Extensions of Presburger Arithmetic , 2011, VMCAI.

[13]  Michael Benedikt,et al.  Generating Plans from Proofs: The Interpolation-based Approach to Query Reformulation , 2016, Synthesis Lectures on Data Management.

[14]  Andrzej Szalas On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..

[15]  Carsten Lutz,et al.  Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.

[16]  James P. Delgrande,et al.  A Knowledge Level Account of Forgetting , 2017, J. Artif. Intell. Res..

[17]  Christoph Wernhard,et al.  Craig Interpolation and Access Interpolation with Clausal First-Order Tableaux , 2018, ArXiv.

[18]  Cezary Kaliszyk,et al.  Efficient Low-Level Connection Tableaux , 2015, TABLEAUX.

[19]  Christoph Wernhard,et al.  The Boolean Solution Problem from the Perspective of Predicate Logic (Abstract) , 2017, SOQE.

[20]  Patrick Doherty,et al.  Computing Strongest Necessary and Weakest Sufficient Conditions of First-Order Formulas , 2001, IJCAI.

[21]  Leopold Löwenheim Über Möglichkeiten im Relativkalkül , 1915 .

[22]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[23]  Björn Pelzer,et al.  System Description: E-KRHyper , 2007, CADE.

[24]  Willem Conradie,et al.  On the strength and scope of DLS , 2006, J. Appl. Non Class. Logics.

[25]  Boris Konev,et al.  Practical Uniform Interpolation and Forgetting for ALC TBoxes with Applications to Logical Difference , 2014, KR.

[26]  Daniel Kroening,et al.  An Interpolating Sequent Calculus for Quantifier-Free Presburger Arithmetic , 2010, IJCAR.

[27]  J. Gustafsson An Implementation and Optimization of an Algorithm for Reducing Formulae in Second-Order Logic , 1996 .

[28]  William Craig,et al.  Three uses of the Herbrand-Gentzen theorem in relating model theory and proof theory , 1957, Journal of Symbolic Logic.

[29]  Christoph Wernhard Projection and scope-determined circumscription , 2012, J. Symb. Comput..

[30]  Patrick Koopmann,et al.  Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.

[31]  Tom Schrijvers,et al.  Under Consideration for Publication in Theory and Practice of Logic Programming Swi-prolog , 2022 .

[32]  Christoph Wernhard,et al.  Second-Order Quantifier Elimination on Relational Monadic Formulas - A Basic Method and Some Less Expected Applications , 2015, TABLEAUX.

[33]  Andrei Voronkov,et al.  Interpolation and Symbol Elimination in Vampire , 2010, IJCAR.

[34]  Ian Horrocks,et al.  Modular Reuse of Ontologies: Theory and Practice , 2008, J. Artif. Intell. Res..

[35]  Jens Otten Restricting backtracking in connection calculi , 2010, AI Commun..

[36]  David Toman,et al.  Fundamentals of Physical Design and Query Compilation , 2011, Fundamentals of Physical Design and Query Compilation.

[37]  R. Reiter,et al.  Forget It ! , 1994 .

[38]  Daniel Weller,et al.  Boolean unification with predicates , 2017, J. Log. Comput..

[39]  C. Siegel Vorlesungen über die Algebra der Logik , 1907 .

[40]  Andrei Voronkov,et al.  Vinter: A Vampire-Based Tool for Interpolation , 2012, APLAS.

[41]  P. Koopmann,et al.  Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .

[42]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[43]  Mark E. Stickel A prolog Technology Theorem Prover: Implementation by an Extended Prolog Compiler , 1986, CADE.

[44]  Christoph Wernhard,et al.  Abduction in Logic Programming as Second-Order Quantifier Elimination , 2013, FroCos.

[45]  Christoph Wernhard,et al.  The PIE Environment for First-Order-Based Proving, Interpolating and Eliminating , 2016, PAAR@IJCAR.

[46]  Heinrich Behmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[47]  Reinhold Letz First-Order Tableau Methods , 1999 .

[48]  H. Bedmann,et al.  Beiträge zur Algebra der Logik, insbesondere zum Entscheidungsproblem , 1922 .

[49]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[50]  Michael Benedikt,et al.  Reformulating Queries: Theory and Practice , 2017, IJCAI.

[51]  Cadence Berkeley Labs Applications of Craig Interpolants in Model Checking , 2005 .

[52]  Christoph Wernhard,et al.  Semantic Knowledge Partitioning , 2004, JELIA.

[53]  Kenneth L. McMillan Interpolation and Model Checking , 2018, Handbook of Model Checking.

[54]  William Craig,et al.  Linear reasoning. A new form of the Herbrand-Gentzen theorem , 1957, Journal of Symbolic Logic.