Anomalous waiting times in high-frequency financial data

In high-frequency financial data not only returns, but also waiting times between consecutive trades are random variables. Therefore, it is possible to apply continuous-time random walks (CTRWs) as phenomenological models of the high-frequency price dynamics. An empirical analysis performed on the 30 DJIA stocks shows that the waiting-time survival probability for high-frequency data is non-exponential. This fact imposes constraints on agent-based models of financial markets.

[1]  A. Lo,et al.  Econometric Models of Limit-Order Executions , 1997 .

[2]  W. K. Bertram An empirical investigation of Australian Stock Exchange data , 2004 .

[3]  Peter Richmond,et al.  Waiting time distributions in financial markets , 2002 .

[4]  L. Bauwens,et al.  The Logarithmic Acd Model: An Application to the Bid-Ask Quote Process of Three NYSE Stocks , 2000 .

[5]  E. Fama EFFICIENT CAPITAL MARKETS: A REVIEW OF THEORY AND EMPIRICAL WORK* , 1970 .

[6]  Gopikrishnan,et al.  Economic fluctuations and anomalous diffusion , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  Enrico Scalas,et al.  Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Enrico Scalas,et al.  Volatility in the Italian Stock Market: An Empirical Study , 1999 .

[9]  Robert F. Engle,et al.  Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model , 1997 .

[10]  A. Lo,et al.  An Econometric Analysis of Nonsynchronous Trading , 1989 .

[11]  Paul H. Cootner The random character of stock market prices , 1968 .

[12]  E. Fama,et al.  Efficient Capital Markets : II , 2007 .

[13]  C. Goodhart,et al.  High frequency data in financial markets: Issues and applications , 1997 .

[14]  P. Levy Théorie de l'addition des variables aléatoires , 1955 .

[15]  F. Lillo,et al.  The Long Memory of the Efficient Market , 2003, cond-mat/0311053.

[16]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance II: the waiting-time distribution , 2000, cond-mat/0006454.

[17]  Neil Shephard,et al.  Dynamics of Trade-by-Trade Price Movements: Decomposition and Models , 1999 .

[18]  Tina Hviid Rydberg,et al.  A Modelling Framework for the Prices and Times of Trades Made on the New York Stock Exchange , 1999 .

[19]  H. Luckock A steady-state model of the continuous double auction , 2003 .

[20]  R. Gorenflo,et al.  Fractional calculus and continuous-time finance , 2000, cond-mat/0001120.

[21]  S. James Press,et al.  A Compound Events Model for Security Prices , 1967 .

[22]  E. Montroll,et al.  Random Walks on Lattices. II , 1965 .

[23]  P. Clark A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices , 1973 .

[24]  Rudolf Hilfer,et al.  Stochastische Modelle für die betriebliche Planung , 1985 .

[25]  B. Arnold,et al.  MOORE, . Some Characteristics of Changes in Common Stock Prices Cootner, ed. The Random Character of Stock Market Prices, pp. . Cambridge: The . , 1964 .

[26]  Maureen O'Hara,et al.  Making Market Microstructure Matter , 1999 .

[27]  Tina Hviid Rydberg,et al.  Modelling Trade-by-Trade Price Movements of Multiple Assets Using Multivariate Compound Poisson Processes , 1999 .

[28]  H. Markowitz,et al.  The Random Character of Stock Market Prices. , 1965 .

[29]  R. C. Merton,et al.  Continuous-Time Finance , 1990 .

[30]  J. Bouchaud,et al.  Fluctuations and response in financial markets: the subtle nature of ‘random’ price changes , 2004 .

[31]  G. Zumbach Considering Time as the Random Variable: The First Hitting Time , 1998 .

[32]  Michael Parkinson,et al.  Option Pricing: The American Put , 1977 .

[33]  Anders Martin-Löf,et al.  On the mathematical theory of risk , 1994 .

[34]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[35]  Taisei Kaizoji,et al.  Power law for the calm-time interval of price changes , 2004 .

[36]  Ananth N. Madhavan,et al.  Market Microstructure: A Survey , 2000 .

[37]  G. Weiss,et al.  Continuous-time random-walk model for financial distributions. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  M. Marchesi,et al.  Agent-based simulation of a financial market , 2001, cond-mat/0103600.

[39]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[40]  Enrico Scalas,et al.  On the Intertrade Waiting-time Distribution , 2005 .

[41]  Seong-Min Yoon,et al.  DYNAMICAL BEHAVIOR OF CONTINUOUS TICK DATA IN FUTURES EXCHANGE MARKET , 2002, cond-mat/0212393.

[42]  Jeffrey R. Russell,et al.  Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data , 1998 .

[43]  Enrico Scalas,et al.  Fractional Calculus and Continuous-Time Finance III : the Diffusion Limit , 2001 .

[44]  E. Montroll Random walks on lattices , 1969 .

[45]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[46]  Ryszard Kutner,et al.  Stochastic simulations of time series within Weierstrass–Mandelbrot walks , 2003 .

[47]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.