Large-mode-area holey fibers with a few air channels in cladding: modeling and experimental investigation of the modal properties

Large-mode-area (LMA) silica holey fibers (HFs) are investigated both theoretically and experimentally with special attention paid to the effect of a limited number of air channels in the cladding on the main modal characteristics of the fibers. We applied the method of integral equations to model the LMA HF modes, and the results of our calculations are compared with the experimental data obtained for the so-called large-hole–large-spacing silica HFs. The effect of the relative holes’ diameter in the case of a few layers in the cladding on the LMA HF properties is addressed in detail because this parameter basically determines the limits of single-mode waveguide operation and transmission loss of the fabricated LMA HFs.

[1]  Jacob Riis Folkenberg,et al.  Low-loss criterion and effective area considerations for photonic crystal fibres , 2003 .

[2]  A. B. Sotskiĭ,et al.  Leaky modes in optical fibers with transverse anisotropy , 2000 .

[3]  Anders Bjarklev,et al.  Mode-field radius of photonic crystal fibers expressed by the V parameter. , 2003, Optics letters.

[4]  D J Richardson,et al.  Comparative study of large-mode holey and conventional fibers. , 2001, Optics letters.

[5]  Andres,et al.  Vector description of higher-order modes in photonic crystal fibers , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[6]  Daniel Maystre,et al.  Microstructured optical fibers: where's the edge? , 2002, Optics express.

[7]  Timothy A. Birks,et al.  Localized function method for modeling defect modes in 2-D photonic crystals , 1999 .

[8]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[9]  R. McPhedran,et al.  Symmetry and degeneracy in microstructured optical fibers. , 2001, Optics letters.

[10]  The properties of modes in microstructured optical fibers in the vicinity of critical conditions , 2003 .

[11]  Martin Nielsen,et al.  Photonic crystal fiber design based on the V-parameter. , 2003, Optics express.

[12]  R. McPhedran,et al.  Confinement losses in microstructured optical fibers. , 2001, Optics letters.

[13]  M. Koshiba,et al.  Structural dependence of effective area and mode field diameter for holey fibers. , 2003, Optics express.

[14]  R. McPhedran,et al.  Modal cutoff in microstructured optical fibers. , 2002, Optics letters.

[15]  H R Simonsen,et al.  Improved large-mode-area endlessly single-mode photonic crystal fibers. , 2003, Optics letters.

[16]  Jacob Riis Folkenberg,et al.  Reduced microdeformation attenuation in large-mode-area photonic crystal fibers for visible applications. , 2003, Optics letters.

[17]  Zhaoming Zhu,et al.  Full-vectorial finite-difference analysis of microstructured optical fibers. , 2002, Optics express.

[18]  Niels Asger Mortensen,et al.  Effective area of photonic crystal fibers. , 2002, Optics express.

[19]  G. Bouwmans,et al.  High power air-clad photonic crystal fibre laser. , 2003, Optics express.

[20]  R. McPhedran,et al.  Multipole method for microstructured optical fibers. I. Formulation , 2003 .

[21]  A. Sotsky,et al.  Modes of capillary optical fibers , 2004 .

[22]  D. Richardson,et al.  Modeling large air fraction holey optical fibers , 2000, Journal of Lightwave Technology.

[23]  Niels Asger Mortensen,et al.  Singlemode photonic crystal fibre with effective area of 600 µm2 and low bending loss , 2003 .

[24]  Simon Fleming,et al.  Microstructured polymer optical fibre. , 2001 .

[25]  R. McPhedran,et al.  Multipole method for microstructured optical fibers. II. Implementation and results , 2002 .

[26]  David J. Richardson,et al.  Holey optical fibers: an efficient modal model , 1999 .

[27]  David V. Plant,et al.  256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS , 2001 .

[28]  Near-field to far-field transition of photonic crystal fibers: symmetries and interference phenomena. , 2002, Optics express.