High density binary TeO2-Bi2O3 glasses: Strong potential as a nontoxic and environmentally friendly glass shields for photons/charged particles

[1]  Imen Kebaili,et al.  Dense and environment friendly bismuth barium telluroborate glasses for nuclear protection applications , 2021, Progress in Nuclear Energy.

[2]  H. Yakout,et al.  Amorphous alloys with high Fe content for radiation shielding applications , 2021 .

[3]  M. Sayyed,et al.  Assessment of gamma-radiation attenuation characteristics of Bi2O3–B2O3–SiO2–Na2O glasses using Geant4 simulation code , 2021, The European Physical Journal Plus.

[4]  I. Akkurt,et al.  Evaluation of radiation shielding capacity of vanadium–tellurite–antimonite semiconducting glasses , 2021 .

[5]  I. Olarinoye,et al.  Photon, proton, and neutron shielding capacity of optical tellurite-vanadate glass systems: Theoretical investigation , 2021, Radiation Physics and Chemistry.

[6]  O. L. Tashlykov,et al.  Gamma ray exposure buildup factor and shielding features for some binary alloys using MCNP-5 simulation code , 2021, Nuclear Engineering and Technology.

[7]  I. Olarinoye,et al.  The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications , 2020 .

[8]  I. Olarinoye,et al.  Elastic moduli, photon, neutron, and proton shielding parameters of tellurite bismo-vanadate (TeO2–V2O5–Bi2O3) semiconductor glasses , 2020 .

[9]  U. Perişanoğlu,et al.  Nuclear radiation shielding using barium borosilicate glass ceramics , 2020 .

[10]  I. Olarinoye,et al.  Mechanical features, alpha particles, photon, proton, and neutron interaction parameters of TeO2–V2O3–MoO3 semiconductor glasses , 2020 .

[11]  H. Akyildirim,et al.  Influence of Bi2O3/PbO on nuclear shielding characteristics of lead-zinc-tellurite glasses , 2020 .

[12]  A. Gürol,et al.  Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites , 2020 .

[13]  Y. Rammah,et al.  B2O3–BaCO3–Li2O3 glass system doped with Co3O4: Structure, optical, and radiation shielding properties , 2020 .

[14]  M. Sayyed,et al.  Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry , 2020 .

[15]  Y. Al‐Hadeethi,et al.  Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3 – Bi2O3 – ZnO – CaO glasses , 2019, Ceramics International.

[16]  Y. Rammah,et al.  Investigation of the physical properties and gamma-ray shielding capability of borate glasses containing PbO, Al2O3 and Na2O , 2019, Applied Physics A.

[17]  I. Olarinoye,et al.  Assessment of shielding potentials and radiological safety indices of Nigerian granite rocks , 2019, Nigerian Journal of Technological Research.

[18]  M. Sayyed,et al.  Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (Bi2O3/MoO3) , 2019, Journal of Non-Crystalline Solids.

[19]  M. Sayyed,et al.  Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications , 2018, Radiation Physics and Chemistry.

[20]  R. El-Mallawany Introduction to Tellurite Glasses , 2017 .

[21]  C. S. Pillai,et al.  Effect of heat treatment on neutron attenuation characteristics of high density concretes (HDC) , 2016 .

[22]  K. M. Haneefa,et al.  Review of concrete performance at elevated temperature and hot sodium exposure applications in nuclear industry , 2013 .

[23]  H. M. Oo,et al.  Optical Properties of Bismuth Tellurite Based Glass , 2012, International journal of molecular sciences.

[24]  R. El-Mallawany The optical properties of tellurite glasses , 1992 .

[25]  P. Schonken,et al.  Health effects of exposure to low levels of ionizing radiation , 1991 .