Low Thermal Conductivity and Enhancement in Figure-of-Merit in Na and Mg Co-doped β-Zn_4Sb_3

[1]  Lidong Chen,et al.  High-Performance and Stable (Ag, Cd)-Containing ZnSb Thermoelectric Compounds. , 2022, ACS applied materials & interfaces.

[2]  Jie Gao,et al.  Substantial thermoelectric enhancement achieved by manipulating the band structure and dislocations in Ag and La co-doped SnTe , 2021, Journal of Advanced Ceramics.

[3]  Zhiquan Chen,et al.  Structural features and thermoelectric performance of Sb- and Bi-doped Cu2SnSe3 compounds , 2021, Rare Metals.

[4]  Junjie Liu,et al.  Structural features and thermoelectric performance of chalcopyrite Cu(In, Ga)Te2 system by isoelectronic substitution , 2021 .

[5]  Zhiquan Chen,et al.  Ultralow Thermal Conductivity and High Thermoelectric Performance in AgCuTe1-xSex through Isoelectronic Substitution. , 2021, ACS applied materials & interfaces.

[6]  Zhiquan Chen,et al.  The reduction of thermal conductivity in Cd and Sn co-doped Cu3SbSe4-based composites with a secondary-phase CdSe , 2020, Journal of Materials Science.

[7]  Haijun Wu,et al.  Ultrahigh average ZT realized in p-type SnSe crystalline thermoelectrics through producing extrinsic vacancies. , 2020, Journal of the American Chemical Society.

[8]  Quansheng Guo,et al.  Rational Design of Spinel-Type Cu4Mn2Te4/TMTe (TM = Co, Ni) Composites with Synergistically Manipulated Electrical and Thermal Transport Properties , 2020 .

[9]  C. Uher,et al.  High-efficiency half-Heusler thermoelectric modules enabled by self-propagating synthesis and topologic structure optimization , 2019, Energy & Environmental Science.

[10]  Hongxia Liu,et al.  Band and Phonon Engineering for Thermoelectric Enhancements of Rhombohedral GeTe. , 2019, ACS applied materials & interfaces.

[11]  Yue Chen,et al.  Lattice Strain Advances Thermoelectrics , 2019, Joule.

[12]  M. Kanatzidis,et al.  n‐Type SnSe2 Oriented‐Nanoplate‐Based Pellets for High Thermoelectric Performance , 2018 .

[13]  Junyou Yang,et al.  Thermoelectric performance of SnTe with ZnO carrier compensation, energy filtering, and multiscale phonon scattering , 2017 .

[14]  Hongxia Liu,et al.  Effect of Pb doped on thermal stability and electrical transport properties of single crystalline β-Zn 4 Sb 3 , 2017 .

[15]  Li-dong Zhao,et al.  Synergistically optimizing thermoelectric transport properties of n-type PbTe via Se and Sn co-alloying , 2017 .

[16]  Di Wu,et al.  Extraordinary Thermoelectric Performance Realized in n‐Type PbTe through Multiphase Nanostructure Engineering , 2017, Advanced materials.

[17]  G. J. Snyder,et al.  Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence , 2017, Advanced materials.

[18]  Jun Mao,et al.  Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties , 2017 .

[19]  Yue Chen,et al.  Substitutional defects enhancing thermoelectric CuGaTe2 , 2017 .

[20]  Zhiwei Chen,et al.  Thermoelectric Properties of Cu2SnSe4 with Intrinsic Vacancy , 2016 .

[21]  P. Fan,et al.  Enhanced thermoelectric properties of Cu doped ZnSb based thin films , 2016 .

[22]  Kuei-Hsien Chen,et al.  Enhancement of thermoelectric figure of merit in β-Zn4Sb3 by indium doping control , 2015 .

[23]  G. J. Snyder,et al.  Characterization of Lorenz number with Seebeck coefficient measurement , 2015 .

[24]  O. Parasyuk,et al.  Influence of cation-vacancy defects on the properties of CuInSe2–ZnIn2Se4 solid solutions , 2015 .

[25]  Qingjie Zhang,et al.  Crystal structure, chemical bond and enhanced performance of β-Zn4Sb3 compounds with interstitial indium dopant , 2014 .

[26]  T. Zou,et al.  Resonant distortion of electronic density of states and enhancement of thermoelectric properties of β-Zn4Sb3 by Pr doping , 2013 .

[27]  Gengfeng Zheng,et al.  Zn4Sb3 Nanotubes as Lithium Ion Battery Anodes with High Capacity and Cycling Stability , 2013 .

[28]  S. Maenosono,et al.  One-pot Chemical Synthesis of Zinc Antimonide Nanoparticles as Building Blocks for Nanostructured Thermoelectric Materials , 2012 .

[29]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[30]  D. Cahill,et al.  Experimental validation of the interfacial form of the Wiedemann-Franz law. , 2012, Physical review letters.

[31]  Shanyu Wang,et al.  Enhanced Thermoelectric Performance and Thermal Stability in β-Zn4Sb3 by Slight Pb-Doping , 2012, Journal of Electronic Materials.

[32]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[33]  M. Liu,et al.  Effects of Bi doping on the thermoelectric properties of β-Zn4Sb3 , 2011 .

[34]  R. Sun,et al.  Effects of silicon addition on thermoelectric properties of bulk Zn4Sb3 at low-temperatures , 2010 .

[35]  Changsong Liu,et al.  Ag and Cu doping and their effects on the thermoelectric properties of Zn4Sb3 , 2010 .

[36]  M. Nygren,et al.  Cd Substitution in MxZn4−-xSb3: Effect on Thermal Stability, Crystal Structure, Phase Transitions, and Thermoelectric Performance , 2010 .

[37]  Zhifeng Ren,et al.  Enhancement of Thermoelectric Figure‐of‐Merit by a Bulk Nanostructuring Approach , 2010 .

[38]  H. Hng,et al.  Effects of Nb doping on thermoelectric properties of Zn_4Sb_3 at high temperatures , 2009 .

[39]  M. Nygren,et al.  The effect of Mg doping on the thermoelectric performance of Zn4Sb3 , 2009, 2007 26th International Conference on Thermoelectrics.

[40]  L. Bell Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems , 2008, Science.

[41]  A. Litvinchuk,et al.  Optical and electronic properties of metal doped thermoelectric Zn4Sb3 , 2008 .

[42]  M. Dresselhaus,et al.  High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys , 2008, Science.

[43]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[44]  M. Nygren,et al.  Hg0.04Zn3.96Sb3: Synthesis, Crystal Structure, Phase Transition, and Thermoelectric Properties , 2007 .

[45]  H. Ohta,et al.  Thermoelectric phase diagram in a CaTiO3–SrTiO3–BaTiO3 system , 2007 .

[46]  H. Liu,et al.  Low-Temperature Structural Transitions in the Phonon-Glass Thermoelectric Material β-Zn4Sb3: Ordering of Zn Interstitials and Defects , 2007 .

[47]  G. J. Snyder,et al.  Effect of disorder on the thermal transport and elastic properties in thermoelectric Zn 4 Sb 3 , 2006 .

[48]  Ur Soon-Chul,et al.  Low-Temperature Thermoelectric Properties of Zn 4 Sb 3 Prepared by Hot Pressing , 2005 .

[49]  G. J. Snyder,et al.  Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.

[50]  S. Ur,et al.  Thermoelectric properties of Zn4Sb3 directly synthesized by hot pressing , 2004 .

[51]  Jean-Pierre Fleurial,et al.  Preparation and thermoelectric properties of semiconducting Zn4Sb3 , 1997 .

[52]  K. Schubert,et al.  Über einige phasen der Mischungen ZnSbN und CdSbN , 1978 .

[53]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[54]  Qingjie Zhang,et al.  Crystal structure and XPS analysis of in-doped β-Zn4Sb3 , 2012 .

[55]  T. Caillat,et al.  Preparation and Thermoelectric Properties of Semiconcucting Zn 4 Sb 3 , 1996 .