The Sorting Receptor SorCS1 Regulates Trafficking of Neurexin and AMPA Receptors

[1]  M. Lucas,et al.  Retromer , 2017, Current Biology.

[2]  G. Petsko,et al.  Retromer in Alzheimer disease, Parkinson disease and other neurological disorders , 2015, Nature Reviews Neuroscience.

[3]  T. Südhof,et al.  Pathogenic Mechanism of an Autism-Associated Neuroligin Mutation Involves Altered AMPA-Receptor Trafficking , 2015, Molecular Psychiatry.

[4]  C. Mahlke,et al.  Spatiotemporal expression analysis of the growth factor receptor SorCS3 , 2014, The Journal of comparative neurology.

[5]  D. Baehrens,et al.  Regional Diversity and Developmental Dynamics of the AMPA-Receptor Proteome in the Mammalian Brain , 2014, Neuron.

[6]  J. Yates,et al.  Ecto-Fc MS identifies ligand-receptor interactions through extracellular domain Fc fusion protein baits and shotgun proteomic analysis , 2014, Nature Protocols.

[7]  R. Huganir,et al.  Sorting Nexin 27 regulates basal and activity-dependent trafficking of AMPARs , 2014, Proceedings of the National Academy of Sciences.

[8]  G. Eichele,et al.  SorCS2 Regulates Dopaminergic Wiring and Is Processed into an Apoptotic Two-Chain Receptor in Peripheral Glia , 2014, Neuron.

[9]  R. Nicoll,et al.  Retromer Mediates a Discrete Route of Local Membrane Delivery to Dendrites , 2014, Neuron.

[10]  C. Burd,et al.  Retromer: a master conductor of endosome sorting. , 2014, Cold Spring Harbor perspectives in biology.

[11]  W. Hong,et al.  A role for sorting nexin 27 in AMPA receptor trafficking , 2014, Nature Communications.

[12]  S. D. Santos,et al.  Ghrelin triggers the synaptic incorporation of AMPA receptors in the hippocampus , 2013, Proceedings of the National Academy of Sciences.

[13]  S. Grant SnapShot: Organizational Principles of the Postsynaptic Proteome , 2013, Neuron.

[14]  C. Vaegter,et al.  Sortilin-Related Receptor SORCS3 Is a Postsynaptic Modulator of Synaptic Depression and Fear Extinction , 2013, PloS one.

[15]  F. Lee,et al.  Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction , 2013, Nature Communications.

[16]  Thomas C. Südhof,et al.  Presynaptic Neurexin-3 Alternative Splicing trans-Synaptically Controls Postsynaptic AMPA Receptor Trafficking , 2013, Cell.

[17]  A. Attie,et al.  Protein Sorting Motifs in the Cytoplasmic Tail of SorCS1 Control Generation of Alzheimer's Amyloid-β Peptide , 2013, The Journal of Neuroscience.

[18]  J. Tavaré,et al.  A global analysis of SNX27–retromer assembly and cargo specificity reveals a function in glucose and metal ion transport , 2013, Nature Cell Biology.

[19]  S. Lipton,et al.  Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction via modulation of glutamate receptor recycling in Down syndrome , 2013, Nature Medicine.

[20]  M. Verhage,et al.  Neurobeachin regulates neurotransmitter receptor trafficking to synapses , 2013, The Journal of cell biology.

[21]  M. Seaman The retromer complex – endosomal protein recycling and beyond , 2012, Journal of Cell Science.

[22]  S. Grant,et al.  Comparative Study of Human and Mouse Postsynaptic Proteomes Finds High Compositional Conservation and Abundance Differences for Key Synaptic Proteins , 2012, PloS one.

[23]  Kenji F. Tanaka,et al.  Shared Synaptic Pathophysiology in Syndromic and Nonsyndromic Rodent Models of Autism , 2012, Science.

[24]  J. Bonifacino,et al.  Signal-Mediated, AP-1/Clathrin-Dependent Sorting of Transmembrane Receptors to the Somatodendritic Domain of Hippocampal Neurons , 2012, Neuron.

[25]  L. Mucke,et al.  Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. , 2012, Cold Spring Harbor perspectives in medicine.

[26]  J. Yates,et al.  Differences in AMPA and kainate receptor interactomes facilitate identification of AMPA receptor auxiliary subunit GSG1L. , 2012, Cell reports.

[27]  Nils Brose,et al.  The role of neurexins and neuroligins in the formation, maturation, and function of vertebrate synapses , 2012, Current Opinion in Neurobiology.

[28]  S. Grant Synaptopathies: diseases of the synaptome , 2012, Current Opinion in Neurobiology.

[29]  R. Huganir,et al.  Regulation of AMPA receptor trafficking and synaptic plasticity , 2012, Current Opinion in Neurobiology.

[30]  Uwe Schulte,et al.  High-Resolution Proteomics Unravel Architecture and Molecular Diversity of Native AMPA Receptor Complexes , 2012, Neuron.

[31]  C. Yap,et al.  Harnessing the Power of the Endosome to Regulate Neural Development , 2012, Neuron.

[32]  Michael F. Walker,et al.  De novo mutations revealed by whole-exome sequencing are strongly associated with autism , 2012, Nature.

[33]  T. Südhof,et al.  Synaptic cell adhesion. , 2012, Cold Spring Harbor perspectives in biology.

[34]  T. Willnow,et al.  Sortilin: a receptor to regulate neuronal viability and function , 2012, Trends in Neurosciences.

[35]  J. Yates,et al.  FLRT Proteins Are Endogenous Latrophilin Ligands and Regulate Excitatory Synapse Development , 2012, Neuron.

[36]  A. Reichelt,et al.  The role of neurexins in schizophrenia and autistic spectrum disorder , 2012, Neuropharmacology.

[37]  Daniel S Spellman,et al.  Neuronal Growth Cone Retraction Relies on Proneurotrophin Receptor Signaling Through Rac , 2011, Science Signaling.

[38]  John Wei,et al.  Identify Risk Genes for ADHD Rare Copy Number Variation Discovery and Cross-Disorder Comparisons , 2011 .

[39]  Brent R. Martin,et al.  Click-generated triazole ureas as ultrapotent, in vivo-active serine hydrolase inhibitors , 2011, Nature chemical biology.

[40]  D. Blackwood,et al.  Convergence of linkage, association and GWAS findings for a candidate region for bipolar disorder and schizophrenia on chromosome 4p , 2011, Molecular Psychiatry.

[41]  N. Brose,et al.  Faculty Opinions recommendation of Differential dynamics and activity-dependent regulation of alpha- and beta-neurexins at developing GABAergic synapses. , 2011 .

[42]  J. Haines,et al.  SORCS1 alters amyloid precursor protein processing and variants may increase Alzheimer's disease risk , 2011, Annals of neurology.

[43]  Yu Fu,et al.  Differential dynamics and activity-dependent regulation of α- and β-neurexins at developing GABAergic synapses , 2010, Proceedings of the National Academy of Sciences.

[44]  Rudolph E Tanzi,et al.  Diabetes-Associated SorCS1 Regulates Alzheimer's Amyloid-β Metabolism: Evidence for Involvement of SorL1 and the Retromer Complex , 2010, The Journal of Neuroscience.

[45]  E. Schuman,et al.  Protein homeostasis and synaptic plasticity , 2010, The EMBO journal.

[46]  T. Takeuchi,et al.  Trans-Synaptic Interaction of GluRδ2 and Neurexin through Cbln1 Mediates Synapse Formation in the Cerebellum , 2010, Cell.

[47]  Raika Pancaroglu,et al.  LRRTMs and Neuroligins Bind Neurexins with a Differential Code to Cooperate in Glutamate Synapse Development , 2010, The Journal of Neuroscience.

[48]  P. Scheiffele,et al.  SnapShot: Neuroligin-Neurexin Complexes , 2010, Cell.

[49]  T. Südhof,et al.  Neurexins Physically and Functionally Interact with GABAA Receptors , 2010, Neuron.

[50]  O. Marín,et al.  Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling , 2010, Nature.

[51]  Peter Kind,et al.  Critical Period Plasticity Is Disrupted in the Barrel Cortex of Fmr1 Knockout Mice , 2010, Neuron.

[52]  Thomas C. Südhof,et al.  LRRTM2 Functions as a Neurexin Ligand in Promoting Excitatory Synapse Formation , 2009, Neuron.

[53]  J. Yates,et al.  LRRTM2 Interacts with Neurexin1 and Regulates Excitatory Synapse Formation , 2009, Neuron.

[54]  T. Südhof,et al.  Mouse neurexin-1α deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments , 2009, Proceedings of the National Academy of Sciences.

[55]  H. Bellen,et al.  Cell adhesion, the backbone of the synapse: "vertebrate" and "invertebrate" perspectives. , 2009, Cold Spring Harbor perspectives in biology.

[56]  L. Goutebroze,et al.  Axonal targeting of Caspr2 in hippocampal neurons via selective somatodendritic endocytosis , 2009, Journal of Cell Science.

[57]  M. Hoon,et al.  Neuroligin 2 Drives Postsynaptic Assembly at Perisomatic Inhibitory Synapses through Gephyrin and Collybistin , 2009, Neuron.

[58]  L. Traub Tickets to ride: selecting cargo for clathrin-regulated internalization , 2009, Nature Reviews Molecular Cell Biology.

[59]  G. Hermey The Vps10p-domain receptor family , 2009, Cellular and Molecular Life Sciences.

[60]  T. Paunio,et al.  Findings from bipolar disorder genome-wide association studies replicate in a Finnish bipolar family-cohort , 2009, Molecular Psychiatry.

[61]  Elvira Bramon,et al.  Disruption of the neurexin 1 gene is associated with schizophrenia. , 2009, Human molecular genetics.

[62]  Stephan Züchner,et al.  Genomic convergence to identify candidate genes for Alzheimer Disease on chromosome 10 , 2009, Human mutation.

[63]  T. Willnow,et al.  VPS10P-domain receptors — regulators of neuronal viability and function , 2008, Nature Reviews Neuroscience.

[64]  M. Missler,et al.  Polarized Targeting of Neurexins to Synapses Is Regulated by their C-Terminal Sequences , 2008, The Journal of Neuroscience.

[65]  T. Südhof Neuroligins and neurexins link synaptic function to cognitive disease , 2008, Nature.

[66]  J. Yates,et al.  Quantitative proteomic analysis of primary neurons reveals diverse changes in synaptic protein content in fmr1 knockout mice , 2008, Proceedings of the National Academy of Sciences.

[67]  B. Barres,et al.  Developmental Control of Synaptic Receptivity , 2008, The Journal of Neuroscience.

[68]  Eric M. Morrow,et al.  Identifying Autism Loci and Genes by Tracing Recent Shared Ancestry , 2008, Science.

[69]  Dietmar Kuhl,et al.  Different Motifs Regulate Trafficking of SorCS1 Isoforms , 2008, Traffic.

[70]  P. Kujala,et al.  The somatodendritic endosomal regulator NEEP21 facilitates axonal targeting of L1/NgCAM , 2008, The Journal of cell biology.

[71]  B. Davletov,et al.  Neurexin Iβ and neuroligin are localized on opposite membranes in mature central synapses , 2007, Journal of neurochemistry.

[72]  R. Huganir,et al.  The cell biology of synaptic plasticity: AMPA receptor trafficking. , 2007, Annual review of cell and developmental biology.

[73]  Jacqueline Blundell,et al.  A Neuroligin-3 Mutation Implicated in Autism Increases Inhibitory Synaptic Transmission in Mice , 2007, Science.

[74]  P. Scheiffele,et al.  Neuroligin‐3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses , 2007, The European journal of neuroscience.

[75]  J. Nyengaard,et al.  Sorting by the Cytoplasmic Domain of the Amyloid Precursor Protein Binding Receptor SorLA , 2007, Molecular and Cellular Biology.

[76]  T. Südhof,et al.  Deletion of α‐neurexins does not cause a major impairment of axonal pathfinding or synapse formation , 2007, The Journal of comparative neurology.

[77]  John R Yates,et al.  15N metabolic labeling of mammalian tissue with slow protein turnover. , 2007, Journal of proteome research.

[78]  H. Taniguchi,et al.  Silencing of Neuroligin Function by Postsynaptic Neurexins , 2007, The Journal of Neuroscience.

[79]  O. Hermanson,et al.  Genetic targeting of principal neurons in neocortex and hippocampus of NEX‐Cre mice , 2006, Genesis.

[80]  J. Yates,et al.  Measurement of the isotope enrichment of stable isotope-labeled proteins using high-resolution mass spectra of peptides. , 2005, Analytical chemistry.

[81]  Thomas C. Südhof,et al.  A Splice Code for trans-Synaptic Cell Adhesion Mediated by Binding of Neuroligin 1 to α- and β-Neurexins , 2005, Neuron.

[82]  Ann Marie Craig,et al.  Neurexins Induce Differentiation of GABA and Glutamate Postsynaptic Specializations via Neuroligins , 2004, Cell.

[83]  H. Schaller,et al.  The three sorCS genes are differentially expressed and regulated by synaptic activity , 2004, Journal of neurochemistry.

[84]  T. Südhof,et al.  Postsynaptic N-methyl-D-aspartate receptor function requires alpha-neurexins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[85]  J. Bonifacino,et al.  Signals for sorting of transmembrane proteins to endosomes and lysosomes. , 2003, Annual review of biochemistry.

[86]  C. Norden,et al.  Uncovering multiple axonal targeting pathways in hippocampal neurons , 2003, The Journal of cell biology.

[87]  M. Campbell,et al.  PANTHER: a library of protein families and subfamilies indexed by function. , 2003, Genome research.

[88]  E. Isacoff,et al.  Neurexin mediates the assembly of presynaptic terminals , 2003, Nature Neuroscience.

[89]  T. Südhof,et al.  α-Neurexins couple Ca2+ channels to synaptic vesicle exocytosis , 2003, Nature.

[90]  I. Hermans-Borgmeyer,et al.  SorCS1, a member of the novel sorting receptor family, is localized in somata and dendrites of neurons throughout the murine brain , 2001, Neuroscience Letters.

[91]  P. Madsen,et al.  The sortilin cytoplasmic tail conveys Golgi–endosome transport and binds the VHS domain of the GGA2 sorting protein , 2001, The EMBO journal.

[92]  Mark von Zastrow,et al.  Role of ampa receptor endocytosis in synaptic plasticity , 2001, Nature Reviews Neuroscience.

[93]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[94]  H. Schaller,et al.  Identification of SorCS2, a novel member of the VPS10 domain containing receptor family, prominently expressed in the developing mouse brain , 2001, Mechanisms of Development.

[95]  X. Jin,et al.  Specificity and efficiency of Cre-mediated recombination in Emx1-Cre knock-in mice. , 2000, Biochemical and biophysical research communications.

[96]  R. Fetter,et al.  Neuroligin Expressed in Nonneuronal Cells Triggers Presynaptic Development in Contacting Axons , 2000, Cell.

[97]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[98]  H. Schaller,et al.  Identification and characterization of SorCS, a third member of a novel receptor family. , 1999, Biochemical and biophysical research communications.

[99]  J. Yates,et al.  Direct analysis of protein complexes using mass spectrometry , 1999, Nature Biotechnology.

[100]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[101]  T. Südhof,et al.  Conserved domain structure of beta-neurexins. Unusual cleaved signal sequences in receptor-like neuronal cell-surface proteins. , 1994, The Journal of biological chemistry.

[102]  S. Heath,et al.  Systematic analysis of candidate genes for Alzheimer's disease in a French, genome-wide association study. , 2010, Journal of Alzheimer's disease : JAD.

[103]  A. J. Slater,et al.  Candidate single-nucleotide polymorphisms from a genomewide association study of Alzheimer disease. , 2008, Archives of neurology.

[104]  Taylor J. Maxwell,et al.  A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease. , 2006, American journal of human genetics.

[105]  T. Südhof,et al.  A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to alpha- and beta-neurexins. , 2005, Neuron.

[106]  Terrence S. Furey,et al.  The UCSC Table Browser data retrieval tool , 2004, Nucleic Acids Res..

[107]  Joshua E. Elias,et al.  Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. , 2003, Journal of proteome research.

[108]  Heikki Rauvala,et al.  [The dynamic synapse]. , 2003, Duodecim; laaketieteellinen aikakauskirja.

[109]  T. Südhof,et al.  Neuroligin 1: a splice site-specific ligand for beta-neurexins. , 1995, Cell.