Upscaling Solution‐Processed Perovskite Photovoltaics

The performance of hybrid organic–inorganic perovskite solar cells has reached a certified efficiency of 25.5% over the past decade, which has attracted significant attention as a promising candidate for photovoltaic (PV) applications. However, the most efficient perovskite solar cells were produced by the technique of spin coating, which is extremely limited in terms of upscaling production for the commercialization of the technology. Furthermore, the efficiencies of large‐area perovskite modules are still significantly lower than those of lab size solar cells. Thus, there are still some challenges that need to be overcome to bridge the efficiency gap between small‐area perovskite solar cells and large‐area perovskite devices. The first challenge lies in preparing high‐quality perovskite layers by low‐cost and scalable techniques with high reproducibility. Second, selecting and depositing charge extraction layers as well as bottom and top electrodes by scalable and low‐cost techniques are essential tasks. In this review, recent progress and challenges of scalable technologies for solution‐based coating and printing of perovskite PVs are summarized and analyzed. Based on the analysis, strategies and opportunities are proposed to promote the development of stable and efficient large‐area perovskite PV toward commercialization.

[1]  C. Brabec,et al.  Low Temperature Processed Fully Printed Efficient Planar Structure Carbon Electrode Perovskite Solar Cells and Modules , 2021, Advanced Energy Materials.

[2]  Jinsong Huang,et al.  Defect compensation in formamidinium–caesium perovskites for highly efficient solar mini-modules with improved photostability , 2021, Nature Energy.

[3]  Laura Calió,et al.  Toward Commercialization of Stable Devices: An Overview on Encapsulation of Hybrid Organic-Inorganic Perovskite Solar Cells , 2021, Crystals.

[4]  H. Ade,et al.  Reducing Energy Disorder of Hole Transport Layer by Charge Transfer Complex for High Performance p–i–n Perovskite Solar Cells , 2021, Advanced materials.

[5]  Yifeng Chen,et al.  Encapsulation of perovskite solar cells for enhanced stability: Structures, materials and characterization , 2021 .

[6]  Shubo Wang,et al.  Structural Design for Efficient Perovskite Solar Modules , 2021, Solar RRL.

[7]  L. Qiu,et al.  Scalable Fabrication of >90 cm2 Perovskite Solar Modules with >1000 h Operational Stability Based on the Intermediate Phase Strategy , 2021, Advanced Energy Materials.

[8]  Z. Ren,et al.  Printing High‐Efficiency Perovskite Solar Cells in High‐Humidity Ambient Environment—An In Situ Guided Investigation , 2021, Advanced science.

[9]  K. Catchpole,et al.  Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells , 2021, Science.

[10]  C. Brabec,et al.  Solution processed oxygen and moisture barrier based on glass flakes for encapsulation of organic (opto-) electronic devices , 2021 .

[11]  Kwanghee Lee,et al.  Simultaneously Passivating Cation and Anion Defects in Metal Halide Perovskite Solar Cells Using a Zwitterionic Amino Acid Additive. , 2020, Small.

[12]  Furkan H. Isikgor,et al.  Scaling-up perovskite solar cells on hydrophobic surfaces , 2020 .

[13]  Zhe Yan,et al.  High‐Pressure Nitrogen‐Extraction and Effective Passivation to Attain Highest Large‐Area Perovskite Solar Module Efficiency , 2020, Advanced materials.

[14]  C. Brabec,et al.  Fully Solution Processed Pure α‐Phase Formamidinium Lead Iodide Perovskite Solar Cells for Scalable Production in Ambient Condition , 2020, Advanced Energy Materials.

[15]  Zhaoxin Wu,et al.  Flexible Perovskite Solar Modules with Functional Layers Fully Vacuum Deposited , 2020, Solar RRL.

[16]  Jan Genoe,et al.  Perovskite modules with 99% geometrical fill factor using point contact interconnections design , 2020, Progress in Photovoltaics: Research and Applications.

[17]  Yongfang Li,et al.  Spatial Distribution Recast for Organic Bulk Heterojunctions for High‐Performance All‐Inorganic Perovskite/Organic Integrated Solar Cells , 2020, Advanced Energy Materials.

[18]  Hyeon Seok Lee,et al.  Tuning the wettability of the blade enhances solution-sheared perovskite solar cell performance , 2020 .

[19]  W. Su,et al.  Toward All Slot‐Die Fabricated High Efficiency Large Area Perovskite Solar Cell Using Rapid Near Infrared Heating in Ambient Air , 2020, Advanced Energy Materials.

[20]  L. Qiu,et al.  A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability , 2020, Nature Energy.

[21]  Rusen Yang,et al.  Interdiffusion Stomatal Movement in Efficient Multiple-Cation-Based Perovskite Solar Cells. , 2020, ACS applied materials & interfaces.

[22]  Yongfang Li,et al.  Organic N‐Type Molecule: Managing the Electronic States of Bulk Perovskite for High‐Performance Photovoltaics , 2020, Advanced Functional Materials.

[23]  Chun-Guey Wu,et al.  Sequential Ultrasonic Spray‐Coating Planar Three Layers for 1 cm 2 Active Area Inverted Perovskite Solar Cells , 2020 .

[24]  C. Brabec,et al.  Rational Interface Design and Morphology Control for Blade‐Coating Efficient Flexible Perovskite Solar Cells with a Record Fill Factor of 81% , 2020, Advanced Functional Materials.

[25]  Meng Su,et al.  Bio-inspired vertebral design for scalable and flexible perovskite solar cells , 2020, Nature Communications.

[26]  Rusen Yang,et al.  Lead acetate produced from lead-acid battery for efficient perovskite solar cells , 2020 .

[27]  Hongwei Chen,et al.  Suppressing Vacancy Defects and Grain Boundaries via Ostwald Ripening for High‐Performance and Stable Perovskite Solar Cells , 2019, Advanced materials.

[28]  B. Richards,et al.  Inkjet‐Printed Micrometer‐Thick Perovskite Solar Cells with Large Columnar Grains , 2019, Advanced Energy Materials.

[29]  Jinsong Huang,et al.  Tailoring solvent coordination for high-speed, room-temperature blading of perovskite photovoltaic films , 2019, Science Advances.

[30]  Dong Yang,et al.  Recent progress in fundamental understanding of halide perovskite semiconductors , 2019 .

[31]  Jinsong Huang,et al.  Scalable Fabrication of Efficient Perovskite Solar Modules on Flexible Glass Substrates , 2019, Advanced Energy Materials.

[32]  Xudong Yang,et al.  Efficient Perovskite Solar Cell Modules with High Stability Enabled by Iodide Diffusion Barriers , 2019, Joule.

[33]  Ian Marius Peters,et al.  The Value of Efficiency in Photovoltaics , 2019, Joule.

[34]  R. Friend,et al.  New Strategies for Defect Passivation in High‐Efficiency Perovskite Solar Cells , 2019, Advanced Energy Materials.

[35]  Jun Hee Lee,et al.  Efficient, stable solar cells by using inherent bandgap of α-phase formamidinium lead iodide , 2019, Science.

[36]  N. Park,et al.  Precursor Engineering for a Large-Area Perovskite Solar Cell with >19% Efficiency , 2019, ACS Energy Letters.

[37]  Yongfang Li,et al.  Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells , 2019, Advanced materials.

[38]  Sisi He,et al.  Scalable Fabrication of Metal Halide Perovskite Solar Cells and Modules , 2019, ACS Energy Letters.

[39]  A. Amano,et al.  Facile and scalable fabrication of low-hysteresis perovskite solar cells and modules using a three-step process for the perovskite layer , 2019, Journal of Power Sources.

[40]  Feng Gao,et al.  Planar perovskite solar cells with long-term stability using ionic liquid additives , 2019, Nature.

[41]  Aldo Di Carlo,et al.  Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules , 2019, ACS Energy Letters.

[42]  Jinsong Huang,et al.  Meniscus fabrication of halide perovskite thin films at high throughput for large area and low-cost solar panels , 2019, International Journal of Extreme Manufacturing.

[43]  C. Brabec,et al.  A Generalized Crystallization Protocol for Scalable Deposition of High‐Quality Perovskite Thin Films for Photovoltaic Applications , 2019, Advanced science.

[44]  M. Green,et al.  Solar cell efficiency tables (version 54) , 2019, Progress in Photovoltaics: Research and Applications.

[45]  M. Grätzel,et al.  Ultrahydrophobic 3D/2D fluoroarene bilayer-based water-resistant perovskite solar cells with efficiencies exceeding 22% , 2019, Science Advances.

[46]  C. Brabec,et al.  Thin Film Encapsulation of Organic Solar Cells by Direct Deposition of Polysilazanes from Solution , 2019, Advanced Energy Materials.

[47]  B. Richards,et al.  Coated and Printed Perovskites for Photovoltaic Applications , 2019, Advanced materials.

[48]  Tae Joo Shin,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[49]  T. Miyasaka,et al.  Halide Perovskite Photovoltaics: Background, Status, and Future Prospects. , 2019, Chemical reviews.

[50]  M. Wasielewski,et al.  Combustion Synthesized Zinc Oxide Electron‐Transport Layers for Efficient and Stable Perovskite Solar Cells , 2019, Advanced Functional Materials.

[51]  Jinsong Hu,et al.  Fully Air-Bladed High-Efficiency Perovskite Photovoltaics , 2019, Joule.

[52]  Jinsong Hu,et al.  Negligible‐Pb‐Waste and Upscalable Perovskite Deposition Technology for High‐Operational‐Stability Perovskite Solar Modules , 2019, Advanced Energy Materials.

[53]  B. Richards,et al.  Electron‐Beam‐Evaporated Nickel Oxide Hole Transport Layers for Perovskite‐Based Photovoltaics , 2019, Advanced Energy Materials.

[54]  Sisi He,et al.  Scalable Fabrication of Stable High Efficiency Perovskite Solar Cells and Modules Utilizing Room Temperature Sputtered SnO2 Electron Transport Layer , 2018, Advanced Functional Materials.

[55]  C. H. Ng,et al.  Melamine Hydroiodide Functionalized MAPbI3 Perovskite with Enhanced Photovoltaic Performance and Stability in Ambient Atmosphere , 2018, Solar RRL.

[56]  Christopher J. Tassone,et al.  Scalable Fabrication of Perovskite Solar Cells to Meet Climate Targets , 2018, Joule.

[57]  Y. Hao,et al.  Interface engineering of TiO2/perovskite interface via fullerene derivatives for high performance planar perovskite solar cells , 2018, Organic Electronics.

[58]  Jinsong Huang,et al.  Dual Functions of Crystallization Control and Defect Passivation Enabled by Sulfonic Zwitterions for Stable and Efficient Perovskite Solar Cells , 2018, Advanced materials.

[59]  P. Lin,et al.  A Review of Inorganic Hole Transport Materials for Perovskite Solar Cells , 2018, Advanced Materials Interfaces.

[60]  Jae Bum Jeon,et al.  Antisolvent with an Ultrawide Processing Window for the One‐Step Fabrication of Efficient and Large‐Area Perovskite Solar Cells , 2018, Advanced materials.

[61]  Y. Qi,et al.  Progress toward Stable Lead Halide Perovskite Solar Cells , 2018, Joule.

[62]  L. Quan,et al.  Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent , 2018, Nature.

[63]  Zhiqun Lin,et al.  Cascade charge transfer enabled by incorporating edge-enriched graphene nanoribbons for mesostructured perovskite solar cells with enhanced performance , 2018, Nano Energy.

[64]  T. Ma,et al.  Addition Effect of Pyreneammonium Iodide to Methylammonium Lead Halide Perovskite‐2D/3D Heterostructured Perovskite with Enhanced Stability , 2018, Advanced Functional Materials.

[65]  Christopher J. Tassone,et al.  Roll-to-Roll Printing of Perovskite Solar Cells , 2018, ACS Energy Letters.

[66]  M. Kang,et al.  Efficient Organic-Inorganic Hybrid Flexible Perovskite Solar Cells Prepared by Lamination of Polytriarylamine/CH3NH3PbI3/Anodized Ti Metal Substrate and Graphene/PDMS Transparent Electrode Substrate. , 2018, ACS applied materials & interfaces.

[67]  E. Meyer,et al.  Lead-Free Halide Double Perovskites: A Review of the Structural, Optical, and Stability Properties as Well as Their Viability to Replace Lead Halide Perovskites , 2018, Metals.

[68]  Francesca De Rossi,et al.  All Printable Perovskite Solar Modules with 198 cm2 Active Area and Over 6% Efficiency , 2018, Advanced Materials Technologies.

[69]  Zhen Li,et al.  Outlook and Challenges of Perovskite Solar Cells toward Terawatt-Scale Photovoltaic Module Technology , 2018, Joule.

[70]  Yujing Li,et al.  Cost Analysis of Perovskite Tandem Photovoltaics , 2018, Joule.

[71]  S. Priya,et al.  Record Efficiency Stable Flexible Perovskite Solar Cell Using Effective Additive Assistant Strategy , 2018, Advanced materials.

[72]  Rongrong Cheacharoen,et al.  Barrier Design to Prevent Metal-Induced Degradation and Improve Thermal Stability in Perovskite Solar Cells , 2018, ACS Energy Letters.

[73]  Jingjing Zhao,et al.  Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules , 2018 .

[74]  R. Munir,et al.  Phase Transition Control for High-Performance Blade-Coated Perovskite Solar Cells , 2018, Joule.

[75]  Stephan Buecheler,et al.  Impact of interlayer application on band bending for improved electron extraction for efficient flexible perovskite mini-modules , 2018, Nano Energy.

[76]  Ruixin Ma,et al.  Enhanced performance of TiO2-based perovskite solar cells with Ru-doped TiO2 electron transport layer , 2018, Solar Energy.

[77]  Xingwang Zhang,et al.  SnO2 : A Wonderful Electron Transport Layer for Perovskite Solar Cells. , 2018, Small.

[78]  T. Ma,et al.  Enhanced Crystallization by Methanol Additive in Antisolvent for Achieving High-Quality MAPbI3 Perovskite Films in Humid Atmosphere. , 2018, ChemSusChem.

[79]  P. Li,et al.  Flexible and Stretchable Perovskite Solar Cells: Device Design and Development Methods , 2018, Small Methods.

[80]  T. Ma,et al.  Dependence of Acetate-Based Antisolvents for High Humidity Fabrication of CH3NH3PbI3 Perovskite Devices in Ambient Atmosphere. , 2018, ACS applied materials & interfaces.

[81]  Zhengqi Shi,et al.  Perovskites-Based Solar Cells: A Review of Recent Progress, Materials and Processing Methods , 2018, Materials.

[82]  Yongfang Li,et al.  A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency , 2018, Advanced materials.

[83]  Tongle Bu,et al.  Low-Temperature Presynthesized Crystalline Tin Oxide for Efficient Flexible Perovskite Solar Cells and Modules. , 2018, ACS applied materials & interfaces.

[84]  Yanlin Song,et al.  Inkjet manipulated homogeneous large size perovskite grains for efficient and large-area perovskite solar cells , 2018 .

[85]  Kai Zhu,et al.  Scalable fabrication of perovskite solar cells , 2018 .

[86]  Tonio Buonassisi,et al.  Accelerating Materials Development via Automation, Machine Learning, and High-Performance Computing , 2018, Joule.

[87]  Zhenan Bao,et al.  The meniscus-guided deposition of semiconducting polymers , 2018, Nature Communications.

[88]  Guolin Hou,et al.  Predicted Lead-Free Perovskites for Solar Cells , 2018 .

[89]  Kai Zhu,et al.  Highly Efficient Perovskite Solar Modules by Scalable Fabrication and Interconnection Optimization , 2018 .

[90]  Ronn Andriessen,et al.  Up-scalable sheet-to-sheet production of high efficiency perovskite module and solar cells on 6-in. substrate using slot die coating , 2017, Solar Energy Materials and Solar Cells.

[91]  S. Hewitt,et al.  2017 , 2017, Les 25 ans de l’OMC: Une rétrospective en photos.

[92]  Shasha Zhang,et al.  Research progress on large-area perovskite thin films and solar modules , 2017 .

[93]  Xin Wang,et al.  Design of Efficient Bifunctional Oxygen Reduction/Evolution Electrocatalyst: Recent Advances and Perspectives , 2017 .

[94]  Adolf Acquaye,et al.  Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies , 2017 .

[95]  Christoph J. Brabec,et al.  A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells , 2017, Science.

[96]  Zhigang Yin,et al.  Planar‐Structure Perovskite Solar Cells with Efficiency beyond 21% , 2017, Advanced materials.

[97]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[98]  Xudong Yang,et al.  A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules , 2017, Nature.

[99]  Laura M. Herz,et al.  Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites , 2017, Nature Energy.

[100]  Xiaofan Deng,et al.  Overcoming the challenges of large-area high-efficiency perovskite solar cells , 2017 .

[101]  Kwanghee Lee,et al.  A Printable Organic Electron Transport Layer for Low‐Temperature‐Processed, Hysteresis‐Free, and Stable Planar Perovskite Solar Cells , 2017 .

[102]  M. Ikegami,et al.  Severe Morphological Deformation of Spiro-OMeTAD in (CH3NH3)PbI3 Solar Cells at High Temperature , 2017 .

[103]  Xudong Yang,et al.  Low‐Temperature Soft‐Cover Deposition of Uniform Large‐Scale Perovskite Films for High‐Performance Solar Cells , 2017, Advanced materials.

[104]  T. Noda,et al.  Thermally Stable MAPbI3 Perovskite Solar Cells with Efficiency of 19.19% and Area over 1 cm2 achieved by Additive Engineering , 2017, Advanced materials.

[105]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[106]  Wei Li,et al.  Directing nucleation and growth kinetics in solution-processed hybrid perovskite thin-films , 2017, Science China Materials.

[107]  Jinsong Huang,et al.  Efficient Flexible Solar Cell based on Composition‐Tailored Hybrid Perovskite , 2017, Advanced materials.

[108]  M. Halik,et al.  Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells , 2017 .

[109]  Xiaowei Li,et al.  Efficiency enhancement in planar CH3NH3PbI3−xClx perovskite solar cells by processing with bidentate halogenated additives , 2017 .

[110]  Mohammad Khaja Nazeeruddin,et al.  One-Year stable perovskite solar cells by 2D/3D interface engineering , 2017, Nature Communications.

[111]  U. Bach,et al.  Diammonium and Monoammonium Mixed‐Organic‐Cation Perovskites for High Performance Solar Cells with Improved Stability , 2017 .

[112]  Paul A. Basore,et al.  A manufacturing cost estimation method with uncertainty analysis and its application to perovskite on glass photovoltaic modules , 2017 .

[113]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[114]  Cheng-Liang Liu,et al.  Controlled Deposition and Performance Optimization of Perovskite Solar Cells Using Ultrasonic Spray-Coating of Photoactive Layers. , 2017, ChemSusChem.

[115]  Kai Zhu,et al.  Perovskite ink with wide processing window for scalable high-efficiency solar cells , 2017, Nature Energy.

[116]  K. Cao,et al.  Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture , 2017 .

[117]  L. Quan,et al.  SOLAR CELLS: Efficient and stable solution‐processed planar perovskite solar cells via contact passivation , 2017 .

[118]  Jeong-Il Park,et al.  Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells , 2017 .

[119]  Rakesh Kumar Sarin,et al.  Dual material gate doping-less tunnel FET with hetero gate dielectric for enhancement of analog/RF performance , 2017 .

[120]  Yue Hu,et al.  Stable Large‐Area (10 × 10 cm2) Printable Mesoscopic Perovskite Module Exceeding 10% Efficiency , 2017 .

[121]  Xiaofan Deng,et al.  High-Efficiency Rubidium-Incorporated Perovskite Solar Cells by Gas Quenching , 2017 .

[122]  Kai Zhu,et al.  Top and bottom surfaces limit carrier lifetime in lead iodide perovskite films , 2017, Nature Energy.

[123]  Yu Yu,et al.  Ultrasmooth Perovskite Film via Mixed Anti-Solvent Strategy with Improved Efficiency. , 2017, ACS applied materials & interfaces.

[124]  Emmanuel Kymakis,et al.  Graphene Interface Engineering for Perovskite Solar Modules: 12.6% Power Conversion Efficiency over 50 cm2 Active Area , 2017 .

[125]  Xudong Yang,et al.  Cost‐Performance Analysis of Perovskite Solar Modules , 2016, Advanced science.

[126]  Matthew J. Carnie,et al.  One-step deposition by slot-die coating of mixed lead halide perovskite for photovoltaic applications , 2017 .

[127]  J. Chen,et al.  Improving the Performance of Formamidinium and Cesium Lead Triiodide Perovskite Solar Cells using Lead Thiocyanate Additives. , 2016, ChemSusChem.

[128]  K. Gödel,et al.  Mesoporous SnO2 electron selective contact enables UV-stable perovskite solar cells , 2016 .

[129]  F. Giustino,et al.  Toward Lead-Free Perovskite Solar Cells , 2016 .

[130]  Michael D. McGehee,et al.  Light-Induced Phase Segregation in Halide-Perovskite Absorbers , 2016 .

[131]  Nakita K. Noel,et al.  Mechanism for rapid growth of organic–inorganic halide perovskite crystals , 2016, Nature Communications.

[132]  M. Nazeeruddin,et al.  PbI2-HMPA Complex Pretreatment for Highly Reproducible and Efficient CH3NH3PbI3 Perovskite Solar Cells. , 2016, Journal of the American Chemical Society.

[133]  N. Park,et al.  Material and Device Stability in Perovskite Solar Cells. , 2016, ChemSusChem.

[134]  Wei Chen,et al.  Perovskite solar cells with 18.21% efficiency and area over 1 cm2 fabricated by heterojunction engineering , 2016, Nature Energy.

[135]  Sergei Tretiak,et al.  High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells , 2016, Nature.

[136]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[137]  Yan Li,et al.  Facile and Scalable Fabrication of Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells in Air Using Gas Pump Method. , 2016, ACS applied materials & interfaces.

[138]  S. Zakeeruddin,et al.  A vacuum flash–assisted solution process for high-efficiency large-area perovskite solar cells , 2016, Science.

[139]  Yafei Li,et al.  Molybdenum Disulfide/Nitrogen‐Doped Reduced Graphene Oxide Nanocomposite with Enlarged Interlayer Spacing for Electrocatalytic Hydrogen Evolution , 2016 .

[140]  M. Li,et al.  Induced Crystallization of Perovskites by a Perylene Underlayer for High-Performance Solar Cells. , 2016, ACS nano.

[141]  Aldo Di Carlo,et al.  High efficiency photovoltaic module based on mesoscopic organometal halide perovskite , 2016 .

[142]  Peng Chen,et al.  Highly Efficient Flexible Perovskite Solar Cells Using Solution-Derived NiOx Hole Contacts. , 2016, ACS nano.

[143]  Tianyu Meng,et al.  Efficient Perovskite Hybrid Solar Cells by Highly Electrical Conductive PEDOT:PSS Hole Transport Layer , 2016 .

[144]  Nam-Gyu Park,et al.  Lewis Acid-Base Adduct Approach for High Efficiency Perovskite Solar Cells. , 2016, Accounts of chemical research.

[145]  Jinsong Huang,et al.  Advances in Perovskite Solar Cells , 2016, Advanced science.

[146]  C. Kost,et al.  LEVELIZED COST OF ELECTRICITY RENEWABLE ENERGY TECHNOLOGIES , 2016 .

[147]  Wei Chen,et al.  Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers , 2015, Science.

[148]  T. Edvinsson,et al.  Goldschmidt’s Rules and Strontium Replacement in Lead Halogen Perovskite Solar Cells: Theory and Preliminary Experiments on CH3NH3SrI3 , 2015 .

[149]  Kai Zhu,et al.  Square‐Centimeter Solution‐Processed Planar CH3NH3PbI3 Perovskite Solar Cells with Efficiency Exceeding 15% , 2015, Advanced materials.

[150]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[151]  G. Cui,et al.  Methylamine-Gas-Induced Defect-Healing Behavior of CH3NH3PbI3 Thin Films for Perovskite Solar Cells. , 2015, Angewandte Chemie.

[152]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[153]  Aldo Di Carlo,et al.  Vertical TiO2 Nanorods as a Medium for Stable and High-Efficiency Perovskite Solar Modules. , 2015, ACS nano.

[154]  Yongbo Yuan,et al.  Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells , 2015, Nature Communications.

[155]  Frederik C. Krebs,et al.  Solution and vapour deposited lead perovskite solar cells: Ecotoxicity from a life cycle assessment perspective , 2015 .

[156]  Tae-Woo Lee,et al.  Planar CH3NH3PbI3 Perovskite Solar Cells with Constant 17.2% Average Power Conversion Efficiency Irrespective of the Scan Rate , 2015, Advanced materials.

[157]  Hongwei Lei,et al.  Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells. , 2015, Journal of the American Chemical Society.

[158]  Jenny Nelson,et al.  Reversible Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells , 2015 .

[159]  S. Mhaisalkar,et al.  Unravelling the Effects of Cl Addition in Single Step CH3NH3PbI3 Perovskite Solar Cells , 2015 .

[160]  Frank W. Fecher,et al.  Guidelines for Closing the Efficiency Gap between Hero Solar Cells and Roll‐To‐Roll Printed Modules , 2015 .

[161]  Aldo Di Carlo,et al.  Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates , 2015 .

[162]  Jianbin Xu,et al.  Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency. , 2015, Journal of the American Chemical Society.

[163]  Aldo Di Carlo,et al.  Perovskite solar cells and large area modules (100 cm2) based on an air flow-assisted PbI2 blade coating deposition process , 2015 .

[164]  Ulrich Wiesner,et al.  Crystallization kinetics of organic-inorganic trihalide perovskites and the role of the lead anion in crystal growth. , 2015, Journal of the American Chemical Society.

[165]  Noel Clark,et al.  3D Printer Based Slot‐Die Coater as a Lab‐to‐Fab Translation Tool for Solution‐Processed Solar Cells , 2015 .

[166]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[167]  Sergei Tretiak,et al.  High-efficiency solution-processed perovskite solar cells with millimeter-scale grains , 2015, Science.

[168]  Linfeng Liu,et al.  Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer. , 2015, Journal of the American Chemical Society.

[169]  Jeffrey A. Christians,et al.  Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. , 2015, Journal of the American Chemical Society.

[170]  Yanli Ding,et al.  Surfactant enhanced surface coverage of CH 3 NH 3 PbI 3−x Cl x perovskite for highly efficient mesoscopic solar cells , 2014 .

[171]  Ni Zhao,et al.  The Role of Chlorine in the Formation Process of “CH3NH3PbI3‐xClx” Perovskite , 2014 .

[172]  Dae Ho Song,et al.  Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process , 2014, Advanced materials.

[173]  Shihe Yang,et al.  Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. , 2014, Angewandte Chemie.

[174]  Leone Spiccia,et al.  Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells , 2014 .

[175]  Zhibin Yang,et al.  Integrating perovskite solar cells into a flexible fiber. , 2014, Angewandte Chemie.

[176]  Ming Cheng,et al.  Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. , 2014, ACS applied materials & interfaces.

[177]  Leone Spiccia,et al.  A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. , 2014, Angewandte Chemie.

[178]  Sang Il Seok,et al.  Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. , 2014, Nature materials.

[179]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[180]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[181]  Seigo Ito,et al.  Effects of Surface Blocking Layer of Sb2S3 on Nanocrystalline TiO2 for CH3NH3PbI3 Perovskite Solar Cells , 2014 .

[182]  Kai Zhu,et al.  Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells , 2014 .

[183]  A Di Carlo,et al.  Solid-state solar modules based on mesoscopic organometal halide perovskite: a route towards the up-scaling process. , 2014, Physical chemistry chemical physics : PCCP.

[184]  Qi Chen,et al.  Planar heterojunction perovskite solar cells via vapor-assisted solution process. , 2014, Journal of the American Chemical Society.

[185]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[186]  Han Yang,et al.  Hybridized Nanowires and Cubes: A Novel Architecture of a Heterojunctioned TiO2/SrTiO3 Thin Film for Efficient Water Splitting , 2010 .

[187]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[188]  John A. Rogers,et al.  Printable organic and polymeric semiconducting materials and devices , 1999 .

[189]  C. Serna,et al.  Uniform colloidal particles in solution: Formation mechanisms , 1995 .

[190]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .