An overview of vortex-induced vibration (VIV) of bridge decks

A brief overview of vortex-induced vibration (VIV) of circular cylinders is first given as most of VIV studies have been focused on this particular bluff cross-section. A critical literature review of VIV of bridge decks that highlights physical mechanisms central to VIV from a renewed perspective is provided. The discussion focuses on VIV of bridge decks from wind-tunnel experiments, full-scale observations, semi-empirical models and computational fluids dynamics (CFD) perspectives. Finally, a recently developed reduced order model (ROM) based on truncated Volterra series is introduced to model VIV of long-span bridges. This model captures successfully salient features of VIVat “lockin” and unlike most phenomenological models offers physical significance of the model kernels.

[1]  Earl H. Dowell,et al.  Non-linear oscillator models in bluff body aero-elasticity , 1981 .

[2]  Jae Seok Lee,et al.  Prediction of vortex-induced wind loading on long-span bridges , 1997 .

[3]  Ahsan Kareem,et al.  Anatomy of Turbulence Effects on the Aerodynamics of an Oscillating Prism , 2009 .

[4]  M. W. Sarwar,et al.  Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures , 2010 .

[5]  P. Bearman VORTEX SHEDDING FROM OSCILLATING BLUFF BODIES , 1984 .

[6]  N. Shiraishi,et al.  Mechanism of, and turbulence effect on vortex-induced oscillations for bridge box girders , 1993 .

[7]  T. Sarpkaya A Critical Review of the Intrinsic Nature of VIV , 2003 .

[8]  V. Strouhal,et al.  Ueber eine besondere Art der Tonerregung , 1878 .

[9]  A. Kareem,et al.  Wind-induced effects on bluff bodies in turbulent flows: Nonstationary, non-Gaussian and nonlinear features , 2013 .

[10]  Allan Larsen,et al.  Aeroelastic analysis of bridge girder sections based on discrete vortex simulations , 1997 .

[11]  Allan Larsen,et al.  Storebælt suspension bridge – vortex shedding excitation and mitigation by guide vanes , 2000 .

[12]  G. W. Jones,et al.  Aerodynamic forces on a stationary and oscillating circular cylinder at high Reynolds numbers , 1969 .

[13]  Robert H. Scanlan,et al.  Wind-Induced Motions of Deer Isle Bridge , 1991 .

[14]  Daniella E. Raveh,et al.  Reduced-Order Models for Nonlinear Unsteady Aerodynamics , 2001 .

[15]  R. Scanlan,et al.  Vortex‐Induced Vibrations of Flexible Bridges , 1990 .

[16]  T. Sarpkaya Vortex-Induced Oscillations: A Selective Review , 1979 .

[17]  Turgut Sarpkaya,et al.  A discrete-vortex analysis of flow about stationary and transversely oscillating circular cylinders , 1979 .

[18]  T. Sarpkaya,et al.  Inviscid Model of Two-Dimensional Vortex Shedding by a Circular Cylinder , 1979 .

[19]  Iain J. Smith,et al.  WIND INDUCED DYNAMIC RESPONSE OF THE WYE BRIDGE , 1980 .

[20]  R H Scanlan,et al.  STATE-OF-THE ART METHODS FOR CALCULATING FLUTTER, VORTEX-INDUCED, AND BUFFETING RESPONSE OF BRIDGE STRUCTURES , 1981 .

[21]  Garrett Birkhoff,et al.  Formation of Vortex Streets , 1953 .

[22]  T Nomura Finite element analysis of vortex-induced vibrations of bluff cylinders , 1993 .

[23]  Allan Larsen,et al.  Reynolds Number Effects in the Flow Around a Bluff Bridge Deck Cross Section , 1998 .

[24]  Robert H. Scanlan,et al.  AMPLITUDE AND TURBULENCE EFFECTS ON BRIDGE FLUTTER DERIVATIVES , 1997 .

[25]  Ferruccio Resta,et al.  On the vortex shedding forcing on suspension bridge deck , 2006 .

[26]  Yasuharu Nakamura,et al.  Unsteady Lifts and Wakes of Oscillating Rectangular Prisms , 1975 .

[27]  G. H. Koopmann,et al.  The vortex wakes of vibrating cylinders at low Reynolds numbers , 1967, Journal of Fluid Mechanics.

[28]  Yozo Fujino,et al.  Wind-induced vibration and control of Trans-Tokyo Bay Crossing bridge , 2002 .

[29]  R. Bishop,et al.  The lift and drag forces on a circular cylinder oscillating in a flowing fluid , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  R. Landl,et al.  A mathematical model for vortex-excited vibrations of bluff bodies , 1975 .

[31]  A. Larsen,et al.  Two dimensional discrete vortex method for application to bluff body aerodynamics , 1997 .

[32]  Yasuharu Nakamura,et al.  Vortex excitation of prisms with elongated rectangular, H and [vdash ] cross-sections , 1986, Journal of Fluid Mechanics.

[33]  J. Gerrard The mechanics of the formation region of vortices behind bluff bodies , 1966, Journal of Fluid Mechanics.

[34]  G. Koopmann,et al.  The vortex-excited lift and reaction forces on resonantly vibrating cylinders , 1977 .

[35]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[36]  O. M. Griffin,et al.  A model for the vortex-excited resonant response of bluff cylinders , 1973 .

[37]  Ronaldo C. Battista,et al.  Reduction of vortex-induced oscillations of Rio–Niterói bridge by dynamic control devices , 2000 .

[38]  John S. Owen,et al.  The Prototype Testing of Kessock Bridge: Response to Vortex Shedding , 1996 .

[39]  Masaru Matsumoto,et al.  On classification of vortex-induced oscillation and its application for bridge structures , 1983 .

[40]  Hiroshi Kobayashi,et al.  Vortex-induced oscillation of bluff cylinders , 1980 .

[41]  B. J. Vickery,et al.  Across-wind vibrations of structure of circular cross-section. Part II. Development of a mathematical model for full-scale application , 1983 .

[42]  L. Rayleigh,et al.  The theory of sound , 1894 .

[43]  Jannette Behrndtz Frandsen Computational fluid structure interaction applied to long-span bridge design. , 1999 .

[44]  R. Blevins,et al.  A Model for Vortex Induced Oscillation of Structures , 1974 .

[45]  Ahsan Kareem,et al.  Linear and nonlinear aeroelastic analysis frameworks for cable-supported bridges , 2013 .

[46]  Allan Larsen,et al.  A generalized model for assessment of vortex-induced vibrations of flexible structures , 1995 .

[47]  O. M. Griffin,et al.  Some Recent Studies of Vortex Shedding With Application to Marine Tubulars and Risers , 1982 .

[48]  Yukio Tamura,et al.  Wake-Oscillator Model of Vortex-Induced Oscillation of Circular Cylinder , 1981 .

[49]  J. B Frandsen,et al.  Simultaneous pressures and accelerations measured full-scale on the Great Belt East suspension bridge , 2001 .

[50]  Allan Larsen,et al.  Discrete vortex simulation of flow around five generic bridge deck sections , 1998 .

[51]  P. d'Asdia,et al.  Nonlinear model of wind-induced vibrations of slender structures with circular cross-sections , 1993 .

[52]  T. Sarpkaya Fluid Forces on Oscillating Cylinders , 1978 .

[53]  Yan Yu,et al.  Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements , 2011 .

[54]  R. H. Wilkinson,et al.  Part II: Spanwise Correlation and Loading , 1981 .

[55]  M. M. Zdravkovich Scruton number; A proposal , 1982 .

[56]  I. G. Currie,et al.  Lift-Oscillator Model of Vortex-Induced Vibration , 1970 .

[57]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[58]  Yinhi Wang,et al.  Flow-Induced Vibrations of Prismatic Bodies and Grids of Prisms , 1993 .

[59]  Ge Yaojun,et al.  Comparison and Analysis of Vortex Induced Vibration for Twin-Box Bridge Sections Based on Experiments in Different Reynolds Numbers , 2008 .

[60]  Richard E. Kronauer,et al.  The formation of vortex streets , 1962, Journal of Fluid Mechanics.

[61]  Robert H. Scanlan,et al.  Deer Isle Bridge: Field and Computed Vibrations , 1989 .

[62]  P. Beran,et al.  Reduced-order modeling: new approaches for computational physics , 2004 .

[63]  Reynolds,et al.  THE OSCILLATIONS OF LARGE CIRCULAR STACKS IN WIND. , 1969 .

[64]  Richard Evelyn Donohue Bishop,et al.  The lift and drag forces on a circular cylinder in a flowing fluid , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[65]  Nicholas P. Jones,et al.  Vortex-Induced Vibration of Circular Cylinders. II: New Model , 1993 .

[66]  J. F. Norberg,et al.  Beschreibung verschiedener Verbesserungen am Branntweinbrenner‐Geräthe , 1800 .

[67]  Hiroto Kataoka,et al.  Numerical simulation of flow field around an oscillating bridge using finite difference method , 1993 .

[68]  John L. Casti,et al.  Nonlinear System Theory , 2012 .