Subzero‐Temperature Cathode for a Sodium‐Ion Battery

A subzero-temperature cathode material is obtained by nucleating cubic prussian blue crystals at inhomogeneities in carbon nanotubes. Due to fast ionic/electronic transport kinetics even at -25 °C, the cathode shows an outstanding low-temperature performance in terms of specific energy, high-rate capability, and cycle life, providing a practical sodium-ion battery powering an electric vehicle in frigid regions.

[1]  A. Manthiram,et al.  VO2/rGO nanorods as a potential anode for sodium- and lithium-ion batteries , 2015 .

[2]  Maria Rosa Palacín,et al.  On the high and low temperature performances of Na-ion battery materials: Hard carbon as a case study , 2015 .

[3]  Seung‐Taek Myung,et al.  Low Temperature Electrochemical Properties of Li[NixCoyMn1-x-y]O2 Cathode Materials for Lithium-Ion Batteries , 2015 .

[4]  Ilias Belharouak,et al.  Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries , 2015, Nature Communications.

[5]  Jinbao Xu,et al.  Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification , 2015 .

[6]  Graeme Henkelman,et al.  Removal of interstitial H2O in hexacyanometallates for a superior cathode of a sodium-ion battery. , 2015, Journal of the American Chemical Society.

[7]  J. Hassoun,et al.  Nanostructured tin–carbon/ LiNi0.5Mn1.5O4 lithium-ion battery operating at low temperature , 2015 .

[8]  Yi Cui,et al.  Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries , 2014, Nature Communications.

[9]  Y. Meng,et al.  Layered SnS2‐Reduced Graphene Oxide Composite – A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material , 2014, Advanced materials.

[10]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[11]  Yan Yu,et al.  Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes. , 2014, Nano letters.

[12]  Andrew J. Binder,et al.  Mesoporous Prussian blue analogues: template-free synthesis and sodium-ion battery applications. , 2014, Angewandte Chemie.

[13]  C. Ling,et al.  First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius , 2013 .

[14]  K. Kang,et al.  A new high-energy cathode for a Na-ion battery with ultrahigh stability. , 2013, Journal of the American Chemical Society.

[15]  Yu‐Guo Guo,et al.  Carbon‐Nanotube‐Decorated Nano‐LiFePO4 @C Cathode Material with Superior High‐Rate and Low‐Temperature Performances for Lithium‐Ion Batteries , 2013 .

[16]  Yuesheng Wang,et al.  A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries , 2013, Nature Communications.

[17]  Wenwen Deng,et al.  Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries , 2013 .

[18]  Y. Moritomo,et al.  A sodium manganese ferrocyanide thin film for Na-ion batteries. , 2013, Chemical communications.

[19]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[20]  John B Goodenough,et al.  The Li-ion rechargeable battery: a perspective. , 2013, Journal of the American Chemical Society.

[21]  Liping Li,et al.  Low-concentration donor-doped LiCoO2 as a high performance cathode material for Li-ion batteries to operate between −10.4 and 45.4 °C , 2012 .

[22]  L. Liao,et al.  Effects of fluoroethylene carbonate on low temperature performance of mesocarbon microbeads anode , 2012 .

[23]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[24]  L. Liao,et al.  Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries , 2012 .

[25]  Hun‐Gi Jung,et al.  A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery. , 2011, Nature communications.

[26]  Jun Liu,et al.  Reversible Sodium Ion Insertion in Single Crystalline Manganese Oxide Nanowires with Long Cycle Life , 2011, Advanced materials.

[27]  Xiqian Yu,et al.  Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS , 2011 .

[28]  Ping He,et al.  Olivine LiFePO4: development and future , 2011 .

[29]  L. Nazar,et al.  Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. , 2010, Angewandte Chemie.

[30]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[31]  Xiqian Yu,et al.  Li-storage in LiFe1/4Mn1/4Co1/4Ni1/4PO4 solid solution , 2008 .

[32]  Jun Chen,et al.  Alpha-CuV2O6 nanowires: hydrothermal synthesis and primary lithium battery application. , 2008, Journal of the American Chemical Society.

[33]  Jiang Fan On the discharge capability and its limiting factors of commercial 18650 Li-ion cell at low temperatures , 2003 .

[34]  Teófilo Rojo,et al.  A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries , 2015 .

[35]  Hong Li,et al.  Equilibrium voltage and overpotential variation of nonaqueous Li–O2 batteries using the galvanostatic intermittent titration technique , 2015 .

[36]  Ya‐Xia Yin,et al.  Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries , 2014, Nano Research.

[37]  Chaoyang Wang,et al.  Li-Ion Cell Operation at Low Temperatures , 2013 .