Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width

Abstract. Hierarchical decompositions of graphs are interesting for algorithmic purposes. There are several types of hierarchical decompositions. Tree decompositions are the best known ones. On graphs of tree-width at most k , i.e., that have tree decompositions of width at most k , where k is fixed, every decision or optimization problem expressible in monadic second-order logic has a linear algorithm. We prove that this is also the case for graphs of clique-width at most k , where this complexity measure is associated with hierarchical decompositions of another type, and where logical formulas are no longer allowed to use edge set quantifications. We develop applications to several classes of graphs that include cographs and are, like cographs, defined by forbidding subgraphs with ``too many'' induced paths with four vertices.

[1]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[2]  Vassilis Giakoumakis,et al.  On P4-tidy graphs , 1997, Discrete Mathematics & Theoretical Computer Science.

[3]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[4]  Beatriz Terezinha Borsoi,et al.  Translations , 1950, Greece and Rome.

[5]  H. Läuchli A Decision Procedure for the Weak Second Order Theory of Linear Order , 1968 .

[6]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1991, Theor. Comput. Sci..

[7]  A. Ehrenfeucht An application of games to the completeness problem for formalized theories , 1961 .

[8]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[9]  J. Christensen Doctoral thesis , 1970 .

[10]  S. Feferman,et al.  The first order properties of products of algebraic systems , 1959 .

[11]  Bruno Courcelle,et al.  The Monadic Second order Logic of Graphs VI: on Several Representations of Graphs By Relational Structures , 1994, Discret. Appl. Math..

[12]  A. Dawar FINITE MODEL THEORY (Perspectives in Mathematical Logic) , 1997 .

[13]  Joost Engelfriet,et al.  Regular Description of Context-Free Graph Languages , 1996, J. Comput. Syst. Sci..

[14]  Yuri Gurevich Modest Theory of Short Chains. I , 1979, J. Symb. Log..

[15]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[16]  B. Courcelle,et al.  Linear Time Solvable Optimization Problems on Certain Structured Graph Families , 1997 .

[17]  Bruno Courcelle,et al.  Monadic Second-Order Evaluations on Tree-Decomposable Graphs , 1993, Theor. Comput. Sci..

[18]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[19]  Detlef Seese,et al.  Easy Problems for Tree-Decomposable Graphs , 1991, J. Algorithms.

[20]  Stephan Olariu,et al.  On the Isomorphism of Graphs with Few P4s , 1995, WG.

[21]  Bruno Courcelle,et al.  Handle-Rewriting Hypergraph Grammars , 1993, J. Comput. Syst. Sci..

[22]  Rolf H. Möhring,et al.  A Fast Algorithm for the Decomposition of Graphs and Posets , 1983, Math. Oper. Res..

[23]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[24]  Joost Engelfriet,et al.  Logical Description of Contex-Free Graph Languages , 1997, J. Comput. Syst. Sci..

[25]  Vassilis Giakoumakis,et al.  On Extended P4-Reducible and Extended P4-Sparse Graphs , 1997, Theor. Comput. Sci..

[26]  Jeremy P. Spinrad,et al.  P4-Trees and Substitution Decomposition , 1992, Discret. Appl. Math..

[27]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[28]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique Width , 1998, WG.

[29]  Jörg Flum,et al.  Finite model theory , 1995, Perspectives in Mathematical Logic.

[30]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs X: Linear Orderings , 1996, Theor. Comput. Sci..

[31]  Bruno Courcelle,et al.  The Expression of Graph Properties and Graph Transformations in Monadic Second-Order Logic , 1997, Handbook of Graph Grammars.

[32]  Ronald V. Book,et al.  Tally Languages and Complexity Classes , 1974, Inf. Control..

[33]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs V: On Closing the Gap Between Definability and Recognizability , 1991, Theor. Comput. Sci..

[34]  Michel Habib,et al.  A New Linear Algorithm for Modular Decomposition , 1994, CAAP.

[35]  Tero Harju,et al.  Characterization and Complexity of Uniformly Non Primitive Labeled 2-Structures , 1996, Theor. Comput. Sci..

[36]  Stephan Olariu,et al.  Linear Time optimization Algorithms for P4-sparse Graphs , 1995, Discret. Appl. Math..

[37]  Juris Hartmanis On Sparse Sets in NP - P , 1983, Inf. Process. Lett..

[38]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..

[39]  Clemens Lautemann Logical Definability of NP-Optimization Problems with Monadic Auxiliary Predicates , 1992, CSL.

[40]  Vassilis Giakoumakis,et al.  On P 4 -tidy graphs , 1997 .

[41]  Saharon Shelah,et al.  Modest Theory of Short Chains. II , 1979, J. Symb. Log..

[42]  S. Shelah The monadic theory of order , 1975, 2305.00968.

[43]  Bruno Courcelle,et al.  Monadic Second-Order Definable Graph Transductions: A Survey , 1994, Theor. Comput. Sci..