Forecasting Portfolio-Value-At-Risk with Nonparametric Lower Tail Dependence Estimates

We propose to forecast the Value-at-Risk of bivariate portfolios using copulas which are calibrated on the basis of nonparametric sample estimates of the coefficient of lower tail dependence. We compare our proposed method to a conventional copula-GARCH model where the parameter of a Clayton copula is estimated via Canonical Maximum-Likelihood. The superiority of our proposed model is exemplified by analyzing a data sample of nine different bivariate and one nine-dimensional financial portfolio. A comparison of the out-of-sample forecasting accuracy of both models confirms that our model yields economically significantly better Value-at-Risk forecasts than the competing parametric calibration strategy.

[1]  R. Engle Dynamic Conditional Correlation , 2002 .

[2]  Matthias Röger,et al.  Turing instabilities in a mathematical model for signaling networks , 2012, Journal of mathematical biology.

[3]  David X. Li On Default Correlation , 2000 .

[4]  M. Heida On gradient flows of nonconvex functionals in Hilbert spaces with Riemannian metric and application to Cahn-Hilliard equations , 2012 .

[5]  M. Voit Central limit theorems for hyperbolic spaces and Jacobi processes on $$[0,\infty [$$ , 2012, 1201.3490.

[6]  M. Rockinger,et al.  The Copula-GARCH model of conditional dependencies: An international stock market application , 2006 .

[7]  Á. Cartea,et al.  Cross-Commodity Analysis and Applications to Risk Management , 2007 .

[8]  L. Mengütürk,et al.  Ranking the Predictive Performances of Value-at-Risk Estimation Methods , 2010 .

[9]  Aristidis K. Nikoloulopoulos,et al.  Vine copulas with asymmetric tail dependence and applications to financial return data , 2012, Comput. Stat. Data Anal..

[10]  Robert V. Kohn,et al.  A Variational Perspective on Cloaking by Anomalous Localized Resonance , 2012, Communications in Mathematical Physics.

[11]  The Concentration Function Problem for Locally Compact Groups Revisited: Nondissipating Space-Time Random Walks, -Decomposable Laws, and Their Continuous Time Analogues , 2013 .

[12]  Andrew J. Patton Modelling Asymmetric Exchange Rate Dependence , 2006 .

[13]  Matthias Fischer,et al.  An empirical analysis of multivariate copula models , 2009 .

[14]  Mark Trede,et al.  Goodness-of-fit tests for parametric families of Archimedean copulas , 2008 .

[15]  W. Wong,et al.  Backtesting Trading Risk of Commercial Banks Using Expected Shortfall , 2008 .

[16]  Peter Christoffersen,et al.  Série Scientifique Scientific Series 2003 s-05 Backtesting Value-at-Risk : A Duration-Based Approach , 2003 .

[17]  M. Voit Central limit theorems for hyperbolic spaces and Jacobi processes on [0;Central limit theorems for hyperbolic spaces and Jacobi processes on [0;∞[ , 2011 .

[18]  J. Tawn,et al.  Extreme Value Dependence in Financial Markets: Diagnostics, Models, and Financial Implications , 2004 .

[19]  Alexander Schnurr Generalization of the Blumenthal-Getoor index to the class of homogeneous diffusions with jumps and some applications , 2013, 1312.3091.

[20]  Ranking the predictive performances of value-at-risk estimation methods , 2012 .

[21]  Hugues Langlois,et al.  Is the Potential for International Diversi?cation Disappearing? A Dynamic Copula Approach , 2012 .

[22]  OLSHANSKI SPHERICAL FUNCTIONS FOR INFINITE DIMENSIONAL MOTION GROUPS OF FIXED RANK , 2012, 1210.1351.

[23]  Ben Schweizer,et al.  The Richards equation with hysteresis and degenerate capillary pressure , 2012 .

[24]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[25]  Waldemar Grundmann Moment Functions and Central Limit Theorem for Jacobi Hypergroups on [$$0,\infty $$[ , 2014 .

[26]  Dean Fantazzini The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study , 2009, Comput. Stat. Data Anal..

[27]  Chin-Wen Huang,et al.  Effectiveness of copula-extreme value theory in estimating value-at-risk: empirical evidence from Asian emerging markets , 2012 .

[28]  Gunky Kim,et al.  Comparison of semiparametric and parametric methods for estimating copulas , 2007, Comput. Stat. Data Anal..

[29]  Ozgur Ince,et al.  Individual Equity Return Data from Thomson Datastream: Handle with Care! , 2004 .

[30]  Rafael Schmidt,et al.  Non‐parametric Estimation of Tail Dependence , 2006 .

[31]  On the influence of autocorrelation and GARCH-effects on goodness-of-fit tests for copulas , 2013 .

[32]  T. Bollerslev,et al.  Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model , 1990 .

[33]  C. Czado,et al.  Truncated regular vines in high dimensions with application to financial data , 2012 .

[34]  Matthias Röger,et al.  Control of the isoperimetric deficit by the Willmore deficit , 2011 .

[35]  T. Koornwinder,et al.  Limit transition between hypergeometric functions of type BC and type A , 2012, Compositio Mathematica.

[36]  Bertrand Melenberg,et al.  Backtesting for Risk-Based Regulatory Capital , 2002 .

[37]  Claudia Czado,et al.  Risk management with high-dimensional vine copulas: An analysis of the Euro Stoxx 50 , 2013 .

[38]  Hendrik Supper,et al.  Forecasting Liquidity-Adjusted Intraday Value-at-Risk with Vine Copulas , 2013 .

[39]  Christian M. Hafner,et al.  Efficient estimation of a semiparametric dynamic copula model , 2010, Comput. Stat. Data Anal..

[40]  M. Heida A two-scale model of two-phase ow in porous media ranging from porespace to the macro scale , 2012 .

[41]  R. Nelsen An Introduction to Copulas , 1998 .

[42]  S. Esedoglu,et al.  Colliding interfaces in old and new diffuse-interface approximations of Willmore-flow , 2012, 1209.6531.

[43]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[44]  W. Grundmann,et al.  LIMIT THEOREMS FOR RADIAL RANDOM WALKS ON EUCLIDEAN SPACES OF HIGH DIMENSIONS , 2012, Journal of the Australian Mathematical Society.

[45]  Carol Alexander,et al.  Developing a stress testing framework based on market risk models , 2008 .

[46]  Peter F. Christoffersen Evaluating Interval Forecasts , 1998 .

[47]  Á. Cartea,et al.  A Multivariate Commodity Analysis and Applications to Risk Management , 2009 .

[48]  F. Klinker Generalized duality for k-forms , 2011, 1109.0894.

[49]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[50]  Modelling dependence of extreme events in energy markets using tail copulas , 2012 .

[51]  M. Sklar Fonctions de repartition a n dimensions et leurs marges , 1959 .

[52]  A. Frigessi,et al.  Pair-copula constructions of multiple dependence , 2009 .

[53]  Paul Embrechts,et al.  Quantitative Risk Management , 2011, International Encyclopedia of Statistical Science.

[54]  B. Rémillard,et al.  Goodness-of-fit tests for copulas: A review and a power study , 2006 .

[55]  M. Voit Uniform oscillatory behavior of spherical functions of $GL_n/U_n$ at the identity and a central limit theorem , 2012, 1205.4866.

[56]  Gregor N. F. Weiß Copula-GARCH versus dynamic conditional correlation: an empirical study on VaR and ES forecasting accuracy , 2013 .

[57]  Martin Heida,et al.  On the derivation of thermodynamically consistent boundary conditions for the Cahn-Hilliard-Navier-Stokes system , 2013 .

[58]  H. Joe,et al.  The Estimation Method of Inference Functions for Margins for Multivariate Models , 1996 .

[59]  W. Hazod,et al.  Multiple decomposability of probabilities on contractible locally compact groups , 2013 .

[60]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[61]  E. Luciano,et al.  Copula methods in finance , 2004 .

[62]  Gregor N. F. Weiß Are Copula-GoF-Tests of Any Practical Use? Empirical Evidence for Stocks, Commodities and FX Futures , 2010 .

[63]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[64]  Claudia Czado,et al.  Selecting and estimating regular vine copulae and application to financial returns , 2012, Comput. Stat. Data Anal..

[65]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[66]  Andrew Ang,et al.  Asymmetric Correlations of Equity Portfolios , 2001 .