Asymptotic Behavior of Tail Density for Sum of Correlated Lognormal Variables

We consider the asymptotic behavior of a probability density function for the sum of any two lognormally distributed random variables that are nontrivially correlated. We show that both the left and right tails can be approximated by some simple functions. Furthermore, the same techniques are applied to determine the tail probability density function for a ratio statistic, and for a sum with more than two lognormally distributed random variables under some stricter conditions. The results yield new insights into the problem of characterization for a sum of lognormally distributed random variables and demonstrate that there is a need to revisit many existing approximation methods.

[1]  Rodney G. Vaughan,et al.  A statistical basis for lognormal shadowing effects in multipath fading channels , 1998, IEEE Trans. Commun..

[2]  Søren Asmussen,et al.  Asymptotics of sums of lognormal random variables with Gaussian copula , 2008 .

[3]  John A. Gubner,et al.  A New Formula for Lognormal Characteristic Functions , 2006, IEEE Transactions on Vehicular Technology.

[4]  Mohsen Kavehrad,et al.  Least Squares Approximations to Lognormal Sum Distributions , 2007, IEEE Transactions on Vehicular Technology.

[5]  M. Lahanas,et al.  Methodology for lognormal modelling of malignant pleural mesothelioma survival time distributions: a study of 5580 case histories from Europe and USA. , 2004, Physics in medicine and biology.

[6]  S. Posner,et al.  Asian Options, The Sum Of Lognormals, And The Reciprocal Gamma Distribution , 1998 .

[7]  Lian Zhao,et al.  Least Squares Approximations to Lognormal Sum Distributions , 2007, IEEE Transactions on Vehicular Technology.

[8]  Jingxian Wu,et al.  Flexible lognormal sum approximation method , 2005, GLOBECOM '05. IEEE Global Telecommunications Conference, 2005..

[9]  Norman C. Beaulieu,et al.  An optimal lognormal approximation to lognormal sum distributions , 2004, IEEE Transactions on Vehicular Technology.

[10]  Ernst Wit,et al.  Statistical Adjustment of Signal Censoring in Gene Expression Experiments , 2003, Bioinform..

[11]  Minyue Fu,et al.  Stochastic analysis of turbo decoding , 2005, IEEE Transactions on Information Theory.

[12]  C. Ho Calculating the mean and variance of power sums with two log-normal components , 1995 .

[13]  PAUL EMBRECHTS,et al.  Modelling of extremal events in insurance and finance , 1994, Math. Methods Oper. Res..

[14]  Tho Le-Ngoc,et al.  Estimation of typical sum of lognormal random variables using log shifted gamma approximation , 2006, IEEE Communications Letters.

[15]  C. Klüppelberg,et al.  Subexponential distributions , 1998 .

[16]  Norman C. Beaulieu,et al.  Estimating the distribution of a sum of independent lognormal random variables , 1995, IEEE Trans. Commun..

[17]  Qihe Tang,et al.  Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables , 2008 .

[18]  Claudia Klüppelberg,et al.  Densities with Gaussian Tails , 1993 .

[19]  M. A. Hamdan The Logarithm of the Sum of Two Correlated Log-Normal Variates , 1971 .

[20]  William A. Janos,et al.  Tail of the distribution of sums of log-normal variates , 1970, IEEE Trans. Inf. Theory.

[21]  N. D. Bruijn Asymptotic methods in analysis , 1958 .

[22]  J. Naus The Distribution of the Logarithm of the Sum of Two Log-Normal Variates , 1969 .

[23]  Agnes Ligeti,et al.  Outage probability in the presence of correlated lognormal useful and interfering components , 2000, IEEE Communications Letters.

[24]  Lian Zhao,et al.  A Strict Approach to Approximating Lognormal Sum Distributions , 2006, 2006 Canadian Conference on Electrical and Computer Engineering.

[25]  Jeffrey H. Shapiro,et al.  Capacity of wireless optical communications , 2003, IEEE J. Sel. Areas Commun..

[26]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[27]  Slimane Ben Slimane,et al.  Bounds on the distribution of a sum of independent lognormal random variables , 2001, IEEE Trans. Commun..

[28]  P. Cardieri,et al.  Statistics of the sum of lognormal variables in wireless communications , 2000, VTC2000-Spring. 2000 IEEE 51st Vehicular Technology Conference Proceedings (Cat. No.00CH37026).

[29]  Fredrik Berggren,et al.  A simple bound on the outage probability with lognormally distributed interferers , 2004, IEEE Communications Letters.

[30]  S. Szyszkowicz Interference in Cellular Networks: Sum of Lognormals Modeling , 2007 .

[31]  Tomokazu Konishi,et al.  Three-parameter lognormal distribution ubiquitously found in cDNA microarray data and its application to parametric data treatment , 2004, BMC Bioinformatics.

[32]  L. Fenton The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems , 1960 .

[33]  R. Leipnik,et al.  On lognormal random variables: I-the characteristic function , 1991, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[34]  Keith Q. T. Zhang,et al.  Model Selection and Estimation for Lognormal Sums in Pearson's Framework , 2006, 2006 IEEE 63rd Vehicular Technology Conference.

[35]  S. Schwartz,et al.  On the distribution function and moments of power sums with log-normal components , 1982, The Bell System Technical Journal.

[36]  Norman C. Beaulieu,et al.  Highly accurate simple closed-form approximations to lognormal sum distributions and densities , 2004, IEEE Communications Letters.