Age-dependent alterations of voltage-gated Na+ channel isoforms in rat sinoatrial node

[1]  C. Remme Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects , 2013, The Journal of physiology.

[2]  M. Gollob,et al.  Voltage-Gated Sodium Channels: Biophysics, Pharmacology, and Related Channelopathies , 2012, Front. Pharmacol..

[3]  M. Boyett,et al.  Ageing‐dependent remodelling of ion channel and Ca2+ clock genes underlying sino‐atrial node pacemaking , 2011, Experimental physiology.

[4]  M. Boyett,et al.  Changes in the expression of ion channels, connexins and Ca2+‐handling proteins in the sino‐atrial node during postnatal development , 2011, Experimental physiology.

[5]  M. Boyett,et al.  Structural remodelling of the sinoatrial node in obese old rats , 2010, Journal of molecular and cellular cardiology.

[6]  Dario DiFrancesco,et al.  Cycling in the Mechanism of Pacemaking Cardiac Pacemaking : Historical Overview and Future Directions , 2010 .

[7]  C. Huang,et al.  Genetic Na+ channelopathies and sinus node dysfunction. , 2008, Progress in biophysics and molecular biology.

[8]  Robert H. Anderson,et al.  New insights into pacemaker activity: promoting understanding of sick sinus syndrome. , 2007, Circulation.

[9]  R. Létienne,et al.  Pharmacological characterisation of sodium channels in sinoatrial node pacemaking in the rat heart. , 2006, European journal of pharmacology.

[10]  Henggui Zhang,et al.  Sinus node dysfunction following targeted disruption of the murine cardiac sodium channel gene Scn5a , 2005, The Journal of physiology.

[11]  L L Isom,et al.  Sodium channels as macromolecular complexes: implications for inherited arrhythmia syndromes. , 2005, Cardiovascular research.

[12]  Ming Lei,et al.  Specific pattern of ionic channel gene expression associated with pacemaker activity in the mouse heart , 2005, The Journal of physiology.

[13]  D. Noble,et al.  Requirement of neuronal‐ and cardiac‐type sodium channels for murine sinoatrial node pacemaking , 2004, The Journal of physiology.

[14]  W. Catterall,et al.  Distinct Subcellular Localization of Different Sodium Channel &agr; and &bgr; Subunits in Single Ventricular Myocytes From Mouse Heart , 2004, Circulation.

[15]  P. Distefano,et al.  Sodium Channel β4, a New Disulfide-Linked Auxiliary Subunit with Similarity to β2 , 2003, The Journal of Neuroscience.

[16]  W. Catterall,et al.  An unexpected requirement for brain-type sodium channels for control of heart rate in the mouse sinoatrial node , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  William A Catterall,et al.  Overview of the voltage-gated sodium channel family , 2003, Genome Biology.

[18]  M. Boyett,et al.  Sophisticated Architecture is Required for the Sinoatrial Node to Perform Its Normal Pacemaker Function , 2003, Journal of cardiovascular electrophysiology.

[19]  Mark E. Josephson,et al.  Clinical cardiac electrophysiology ; techniques and interpretations , 2001 .

[20]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[21]  R. Robinson,et al.  Single-channel properties of the sinoatrial node Na+ current in the newborn rabbit , 2001, Pflügers Archiv.

[22]  L. Isom Sodium Channel β Subunits: Anything but Auxiliary , 2001 .

[23]  R. Robinson,et al.  Na(+) current contribution to the diastolic depolarization in newborn rabbit SA node cells. , 2000, American journal of physiology. Heart and circulatory physiology.

[24]  H Honjo,et al.  The sinoatrial node, a heterogeneous pacemaker structure. , 2000, Cardiovascular research.

[25]  Gail Mandel,et al.  Nomenclature of Voltage-Gated Sodium Channels , 2000, Neuron.

[26]  K Mizuguchi,et al.  beta 3: an additional auxiliary subunit of the voltage-sensitive sodium channel that modulates channel gating with distinct kinetics. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G. Gregoratos,et al.  MANAGEMENT OF ATRIAL FIBRILLATION, VENTRICULAR ARRHYTHMIAS AND PACEMAKERS IN OLDER PERSONS: Permanent Pacemakers in Older Persons , 1999 .

[28]  D. Laude,et al.  Contribution of the autonomic nervous system to blood pressure and heart rate variability changes in early experimental hyperthyroidism. , 1998, European journal of pharmacology.

[29]  G. Berkowitz,et al.  Characterization of a TTX-sensitive Na+ current in pacemaker cells isolated from rabbit sinoatrial node. , 1996, The American journal of physiology.

[30]  D DiFrancesco,et al.  A TTX‐sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino‐atrial node cells. , 1996, The Journal of physiology.

[31]  W. Catterall,et al.  Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif , 1995, Cell.

[32]  L N Bouman,et al.  Electrophysiology of the ageing rabbit and cat sinoatrial node--a comparative study. , 1993, European heart journal.

[33]  A L Goldin,et al.  Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. , 1992, Science.

[34]  J C Denyer,et al.  Rabbit sino‐atrial node cells: isolation and electrophysiological properties. , 1990, The Journal of physiology.

[35]  J. Linhart,et al.  A New Method for Measurement of Sinoatrial Conduction Time , 1978, Circulation.

[36]  G. Breithardt,et al.  Sinus Node Recovery Time and Calculated Sinoatrial Conduction Time in Normal Subjects and Patients with Sinus Node Dysfunction , 1977, Circulation.

[37]  Colleen E Clancy,et al.  Age-dependent changes in Na current magnitude and TTX-sensitivity in the canine sinoatrial node. , 2010, Journal of molecular and cellular cardiology.

[38]  M Lei,et al.  Computational evaluation of the roles of Na+ current, iNa, and cell death in cardiac pacemaking and driving. , 2007, American journal of physiology. Heart and circulatory physiology.

[39]  A. L. Goldin,et al.  Resurgence of sodium channel research. , 2001, Annual review of physiology.

[40]  S. Bharati,et al.  Effects of physiological aging on cardiac electrophysiology in perfused Fischer 344 rat hearts. , 1992, The American journal of physiology.