PAC-BAYESIAN SUPERVISED CLASSIFICATION: The Thermodynamics of Statistical Learning
暂无分享,去创建一个
[1] Frans M. J. Willems,et al. The context-tree weighting method: basic properties , 1995, IEEE Trans. Inf. Theory.
[2] Neri Merhav,et al. Hierarchical universal coding , 1996, IEEE Trans. Inf. Theory.
[3] Frans M. J. Willems,et al. Context weighting for general finite-context sources , 1996, IEEE Trans. Inf. Theory.
[4] P. Massart,et al. From Model Selection to Adaptive Estimation , 1997 .
[5] Noga Alon,et al. Scale-sensitive dimensions, uniform convergence, and learnability , 1997, JACM.
[6] John Shawe-Taylor,et al. Structural Risk Minimization Over Data-Dependent Hierarchies , 1998, IEEE Trans. Inf. Theory.
[7] Vladimir Vapnik,et al. Statistical learning theory , 1998 .
[8] M. Habib. Probabilistic methods for algorithmic discrete mathematics , 1998 .
[9] Yuhong Yang,et al. Information-theoretic determination of minimax rates of convergence , 1999 .
[10] David A. McAllester. PAC-Bayesian model averaging , 1999, COLT '99.
[11] E. Mammen,et al. Smooth Discrimination Analysis , 1999 .
[12] S. Geer. Applications of empirical process theory , 2000 .
[13] Olivier Catoni,et al. DATA COMPRESSION AND ADAPTIVE HISTOGRAMS , 2002 .
[14] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[15] O. Catoni. Laplace transform estimates and deviation inequalities , 2001 .
[16] Jean-Philippe Vert,et al. Adaptive context trees and text clustering , 2001, IEEE Trans. Inf. Theory.
[17] Jean-Philippe Vert. Text Categorization Using Adaptive Context Trees , 2001, CICLing.
[18] John Langford,et al. An Improved Predictive Accuracy Bound for Averaging Classifiers , 2001, ICML.
[19] Matthias W. Seeger,et al. PAC-Bayesian Generalisation Error Bounds for Gaussian Process Classification , 2003, J. Mach. Learn. Res..
[20] Nello Cristianini,et al. On the generalization of soft margin algorithms , 2002, IEEE Trans. Inf. Theory.
[21] Manfred K. Warmuth,et al. Relating Data Compression and Learnability , 2003 .
[22] A. Tsybakov,et al. Optimal aggregation of classifiers in statistical learning , 2003 .
[23] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[24] Olivier Catoni,et al. Statistical learning theory and stochastic optimization , 2004 .
[25] David A. McAllester. Some PAC-Bayesian Theorems , 1998, COLT' 98.
[26] Jean-Yves Audibert. Aggregated estimators and empirical complexity for least square regression , 2004 .
[27] John Langford,et al. Computable Shell Decomposition Bounds , 2000, J. Mach. Learn. Res..
[28] S. Geer,et al. Square root penalty: Adaptation to the margin in classification and in edge estimation , 2005, math/0507422.
[29] Tong Zhang. From ɛ-entropy to KL-entropy: Analysis of minimum information complexity density estimation , 2006, math/0702653.
[30] Tong Zhang,et al. Information-theoretic upper and lower bounds for statistical estimation , 2006, IEEE Transactions on Information Theory.