Exact and approximate continuous-variable gate decompositions

We gather and examine in detail gate decomposition techniques for continuous-variable quantum computers and also introduce some new techniques which expand on these methods. Both exact and approximate decomposition methods are studied and gate counts are compared for some common operations. While each having distinct advantages, we find that exact decompositions have lower gate counts whereas approximate techniques can cover decompositions for all continuous-variable operations but require significant circuit depth for a modest precision.

[1]  S. Braunstein,et al.  Quantum Fourier transform, Heisenberg groups and quasi-probability distributions , 2010, 1004.5425.

[2]  Christian Weedbrook,et al.  ON states as resource units for universal quantum computation with photonic architectures , 2018, Physical Review A.

[3]  R. Simon,et al.  The real symplectic groups in quantum mechanics and optics , 1995, quant-ph/9509002.

[4]  Raymond Kan From moments of sum to moments of product , 2008 .

[5]  Seth Lloyd,et al.  Quantum Computation over Continuous Variables , 1999 .

[6]  G. Milburn,et al.  Quantum computation with optical coherent states , 2002, QELS 2002.

[7]  A. Kitaev Quantum computations: algorithms and error correction , 1997 .

[8]  J. O'Brien,et al.  Simulating the vibrational quantum dynamics of molecules using photonics , 2018, Nature.

[9]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[10]  M. Mosca,et al.  A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[12]  Timjan Kalajdzievski,et al.  Exact gate decompositions for photonic quantum computing , 2018, Physical Review A.

[13]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[14]  Seth Lloyd,et al.  Quantum algorithm for nonhomogeneous linear partial differential equations , 2018, Physical Review A.

[15]  Stephen M. Barnett,et al.  Methods in Theoretical Quantum Optics , 1997 .

[16]  T. Ralph,et al.  Universal quantum computation with continuous-variable cluster states. , 2006, Physical review letters.

[17]  Martin Rötteler,et al.  Efficient synthesis of universal Repeat-Until-Success circuits , 2014, Physical review letters.

[18]  Josh Izaac,et al.  Production of photonic universal quantum gates enhanced by machine learning , 2019, Physical Review A.

[19]  P. Loock,et al.  Measurement-induced optical Kerr interaction , 2013, 1303.6356.

[20]  A. Serafini Quantum Continuous Variables: A Primer of Theoretical Methods , 2017 .

[21]  P. Høyer,et al.  Higher order decompositions of ordered operator exponentials , 2008, 0812.0562.

[22]  E M Fortunato,et al.  Implementation of the quantum Fourier transform. , 2001, Physical review letters.

[23]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[24]  Shuntaro Takeda,et al.  General implementation of arbitrary nonlinear quadrature phase gates , 2017, 1708.02822.

[25]  C. Weedbrook,et al.  Quantum Machine Learning over Infinite Dimensions. , 2016, Physical review letters.

[26]  L. Sánchez-Soto,et al.  Simple factorization of unitary transformations , 2017, 1708.00735.

[27]  Dmitri Maslov,et al.  Toward the first quantum simulation with quantum speedup , 2017, Proceedings of the National Academy of Sciences.

[28]  Humphreys,et al.  An Optimal Design for Universal Multiport Interferometers , 2016, 1603.08788.

[29]  Ish Dhand,et al.  Hybrid spatiotemporal architectures for universal linear optics , 2018, Physical Review A.

[30]  N. Killoran,et al.  Strawberry Fields: A Software Platform for Photonic Quantum Computing , 2018, Quantum.

[31]  Vadym Kliuchnikov,et al.  A framework for exact synthesis , 2015, ArXiv.

[32]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[33]  Barenco,et al.  Elementary gates for quantum computation. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[34]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[35]  Reck,et al.  Experimental realization of any discrete unitary operator. , 1994, Physical review letters.

[36]  J. Preskill,et al.  Encoding a qubit in an oscillator , 2000, quant-ph/0008040.

[37]  N. C. Menicucci,et al.  Quantum Computing with Continuous-Variable Clusters , 2009, 0903.3233.

[38]  H. Trotter On the product of semi-groups of operators , 1959 .

[39]  S. Braunstein Squeezing as an irreducible resource , 1999, quant-ph/9904002.

[40]  N. Hatano,et al.  Finding Exponential Product Formulas of Higher Orders , 2005, math-ph/0506007.

[41]  T. Ralph,et al.  Coherent state topological cluster state production , 2011, 1101.5496.

[42]  George Siopsis,et al.  Repeat-until-success cubic phase gate for universal continuous-variable quantum computation , 2014, 1412.0336.

[43]  P. Rebentrost,et al.  Continuous-variable gate decomposition for the Bose-Hubbard model , 2018, Physical Review A.

[44]  Hidehiro Yonezawa,et al.  Emulating quantum cubic nonlinearity , 2013 .

[45]  Seth Lloyd,et al.  Gaussian quantum information , 2011, 1110.3234.

[46]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[47]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[48]  Nicolas C. Menicucci,et al.  Modular Bosonic Subsystem Codes. , 2019, Physical review letters.

[49]  Peter van Loock,et al.  How to decompose arbitrary continuous-variable quantum operations. , 2010, Physical review letters.

[50]  M. Lewenstein,et al.  Dipolar molecules in optical lattices. , 2011, Physical review letters.

[51]  M. Suzuki,et al.  Generalized Trotter's formula and systematic approximants of exponential operators and inner derivations with applications to many-body problems , 1976 .