Deep ultraviolet light-emitting diodes using quaternary AlInGaN multiple quantum wells

We report on the growth, fabrication, and characterization of deep ultraviolet (UV) light-emitting diodes (LEDs) with quaternary AlInGaN-AlInGaN multiple quantum wells (MQWs) in the active region. These high quality quaternary MQWs were deposited over sapphire and n-SiC substrates using a novel pulsed atomic layer epitaxy (PALE) technique. LEDs with peak emission wavelengths from 305-340 nm were fabricated and characterized. Using square geometry devices over sapphire and n-SiC substrates we studied the role of current crowding. Numerical simulation results are also provided to explain the observed current-voltage and light-emission characteristics.

[1]  Quaternary AlInGaN Multiple Quantum Wells for Ultraviolet Light Emitting Diodes : Semiconductors , 2001 .

[2]  H. Amano,et al.  Structural Properties of Al 1- xIn xN Ternary Alloys on GaN Grown by Metalorganic Vapor Phase Epitaxy , 1998 .

[3]  M. Shur,et al.  Ultraviolet Light-Emitting Diodes at 340 nm using Quaternary AlInGaN Multiple Quantum Wells , 2001 .

[4]  Naoki Kobayashi,et al.  Milliwatt operation of AlGaN-based single-quantum-well light emitting diode in the ultraviolet region , 2001 .

[5]  M. Shur,et al.  Pulsed atomic layer epitaxy of quaternary AlInGaN layers , 2001 .

[6]  Michael S. Shur,et al.  Lattice and energy band engineering in AlInGaN/GaN heterostructures , 2000 .

[7]  Michael S. Shur,et al.  Enhanced Luminescence in InGaN Multiple Quantum Wells with Quaternary AlInGaN Barriers , 2000 .

[8]  Isamu Akasaki,et al.  Anomalous features in the optical properties of Al1−xInxN on GaN grown by metal organic vapor phase epitaxy , 2000 .

[9]  Michael S. Shur,et al.  Indium-Silicon Co-Doping of High-Aluminum-Content AlGaN for Solar Blind Photodetectors , 2001 .

[10]  J. Shah,et al.  Hot‐carrier effects in 1.3‐μ In1−xGaxAsyP1−y light emitting diodes , 1981 .

[11]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[12]  M. Khan,et al.  GaN/AlN digital alloy short‐period superlattices by switched atomic layer metalorganic chemical vapor deposition , 1993 .

[13]  M. Asif Khan,et al.  Low pressure metalorganic chemical vapor deposition of AIN over sapphire substrates , 1992 .

[14]  H. Amano,et al.  Structural characterization of Al1−xInxN lattice-matched to GaN , 2000 .

[15]  Naoki Kobayashi,et al.  Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN , 2001 .

[16]  M. Asif Khan,et al.  Atomic layer epitaxy of GaN over sapphire using switched metalorganic chemical vapor deposition , 1992 .

[17]  G. Simin,et al.  Stripe Geometry Ultraviolet Light Emitting Diodes at 305 Nanometers Using Quaternary AlInGaN Multiple Quantum Wells , 2001 .

[18]  M. Shur,et al.  PIEZOELECTRIC DOPING IN ALINGAN/GAN HETEROSTRUCTURES , 1999 .

[19]  Michael S. Shur,et al.  Optical bandgap formation in AlInGaN alloys , 2000 .

[20]  Shuji Nakamura,et al.  Quantum-Confined Stark Effect in an AlGaN/GaN/AlGaN Single Quantum Well Structure , 1999 .

[21]  Grigory Simin,et al.  Lateral Current Crowding in Deep UV Light Emitting Diodes over Sapphire Substrates , 2002 .

[22]  E. F. Schubert,et al.  Current crowding in GaN/InGaN light emitting diodes on insulating substrates , 2001 .