Exploring scalar fields using critical isovalues

Isosurfaces are commonly used to visualize scalar fields. Critical isovalues indicate isosurface topology changes: the creation of new surface components, merging of surface components or the formation of holes in a surface component. Therefore, they highlight interesting isosurface behavior and are helpful in exploration of large trivariate data sets. We present a method that detects critical isovalues in a scalar field defined by piecewise trilinear interpolation over a rectilinear grid and describe how to use them when examining volume data. We further review varieties of the marching cubes (MC) algorithm, with the intention of preserving topology of the trilinear interpolant when extracting an isosurface. We combine and extend two approaches in such a way that it is possible to extract meaningful isosurfaces even when a critical value is chosen as the isovalue.

[1]  Gerald E. Farin,et al.  On Approximating Contours of the Piecewise Trilinear Interpolant Using Triangular Rational-Quadratic Bézier Patches , 1997, IEEE Trans. Vis. Comput. Graph..

[2]  Renato Pajarola,et al.  Topology preserving and controlled topology simplifying multiresolution isosurface extraction , 2000 .

[3]  Gregory M. Nielson,et al.  On Marching Cubes , 2003, IEEE Trans. Vis. Comput. Graph..

[4]  Valerio Pascucci,et al.  Visualization of scalar topology for structural enhancement , 1998 .

[5]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[6]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[7]  Holger Theisel Exact Isosurfaces for Marching Cubes , 2002, Comput. Graph. Forum.

[8]  Chandrajit L. Bajaj,et al.  Topology preserving data simplification with error bounds , 1998, Comput. Graph..

[9]  E LorensenWilliam,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987 .

[10]  Yuriko Takeshima,et al.  Solid Fitting: Field Interval Analysis for Effective Volume Exploration , 1997, Scientific Visualization Conference (dagstuhl '97).

[11]  Yuriko Takeshima,et al.  Automating transfer function design for comprehensible volume rendering based on 3D field topology analysis , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[12]  Yuriko Takeshima,et al.  Volume Data Mining Using 3D Field Topology Analysis , 2000, IEEE Computer Graphics and Applications.

[13]  Martin Kraus,et al.  Topology-Guided Downsampling , 2001, VG.

[14]  Henderson,et al.  The Twenty-Seven Lines upon the Cubic Surface , 1912 .

[15]  Paolo Cignoni,et al.  Reconstruction of topologically correct and adaptive trilinear isosurfaces , 2000, Comput. Graph..

[16]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[17]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[18]  Archibald Henderson,et al.  The Twenty-Seven Lines upon the Cubic Surface , 1912, Nature.

[19]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[20]  Martin J. Dürst,et al.  Re , 1988 .

[21]  Bernd Hamann Visualization and modeling contours of trivariate functions , 1991 .

[22]  David E. Breen,et al.  Semi-regular mesh extraction from volumes , 2000 .

[23]  Bernd Hamann,et al.  Modeling contours of trivariate data , 1992 .

[24]  TakahashiShigeo,et al.  Volume Data Mining Using 3D Field Topology Analysis , 2000 .

[25]  E Chernyaev,et al.  Marching cubes 33 : construction of topologically correct isosurfaces , 1995 .

[26]  Jane Wilhelms,et al.  Topological considerations in isosurface generation , 1994, TOGS.

[27]  Alyn P. Rockwood Accurate display of tensor product isosurfaces , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.