Aligned Diffusion Schr\"odinger Bridges

Diffusion Schr\"odinger bridges (DSB) have recently emerged as a powerful framework for recovering stochastic dynamics via their marginal observations at different time points. Despite numerous successful applications, existing algorithms for solving DSBs have so far failed to utilize the structure of aligned data, which naturally arises in many biological phenomena. In this paper, we propose a novel algorithmic framework that, for the first time, solves DSBs while respecting the data alignment. Our approach hinges on a combination of two decades-old ideas: The classical Schr\"odinger bridge theory and Doob's $h$-transform. Compared to prior methods, our approach leads to a simpler training procedure with lower variance, which we further augment with principled regularization schemes. This ultimately leads to sizeable improvements across experiments on synthetic and real data, including the tasks of rigid protein docking and temporal evolution of cellular differentiation processes.

[1]  Y. Bengio,et al.  Conditional Flow Matching: Simulation-Free Dynamic Optimal Transport , 2023, ArXiv.

[2]  T. Jaakkola,et al.  DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking , 2022, ICLR.

[3]  B. Deplancke,et al.  Live-seq enables temporal transcriptomic recording of single cells , 2022, Nature.

[4]  Marco Cuturi,et al.  Supervised Training of Conditional Monge Maps , 2022, ArXiv.

[5]  M. Welling,et al.  Path Integral Stochastic Optimal Control for Sampling Transition Paths , 2022, ArXiv.

[6]  Marco Cuturi,et al.  Optimal Transport Tools (OTT): A JAX Toolbox for all things Wasserstein , 2022, ArXiv.

[7]  Yongxin Chen,et al.  Path Integral Sampler: a stochastic control approach for sampling , 2021, ICLR.

[8]  T. Jaakkola,et al.  Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking , 2021, ICLR.

[9]  E. Theodorou,et al.  Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory , 2021, ICLR.

[10]  Andreas Krause,et al.  Proximal Optimal Transport Modeling of Population Dynamics , 2021, AISTATS.

[11]  Evangelos A. Theodorou,et al.  Deep Generalized Schrödinger Bridge , 2022, NeurIPS.

[12]  Stefan G. Stark,et al.  Learning single-cell perturbation responses using neural optimal transport , 2021, bioRxiv.

[13]  O. Schueler‐Furman,et al.  Harnessing protein folding neural networks for peptide–protein docking , 2021, Nature Communications.

[14]  Neil D. Lawrence,et al.  Solving Schrödinger Bridges via Maximum Likelihood , 2021, Entropy.

[15]  Valentin De Bortoli,et al.  Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling , 2021, NeurIPS.

[16]  Tryphon T. Georgiou,et al.  Optimal Transport in Systems and Control , 2021, Annu. Rev. Control. Robotics Auton. Syst..

[17]  T. Georgiou,et al.  Stochastic Control Liaisons: Richard Sinkhorn Meets Gaspard Monge on a Schrödinger Bridge , 2021, SIAM Rev..

[18]  Pieter Abbeel,et al.  Denoising Diffusion Probabilistic Models , 2020, NeurIPS.

[19]  Yumeng Yan,et al.  The HDOCK server for integrated protein–protein docking , 2020, Nature Protocols.

[20]  Kathryn A. Porter,et al.  Performance and Its Limits in Rigid Body Protein-Protein Docking. , 2020, Structure.

[21]  D. V. Dijk,et al.  TrajectoryNet: A Dynamic Optimal Transport Network for Modeling Cellular Dynamics , 2020, ICML.

[22]  Allon M. Klein,et al.  Lineage tracing on transcriptional landscapes links state to fate during differentiation , 2018, Science.

[23]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[24]  Mohammad Lotfollahi,et al.  scGen predicts single-cell perturbation responses , 2019, Nature Methods.

[25]  Yang Song,et al.  Generative Modeling by Estimating Gradients of the Data Distribution , 2019, NeurIPS.

[26]  Gabriel Peyré,et al.  Computational Optimal Transport , 2018, Found. Trends Mach. Learn..

[27]  Ion Stoica,et al.  Tune: A Research Platform for Distributed Model Selection and Training , 2018, ArXiv.

[28]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[29]  Isaure Chauvot de Beauchêne,et al.  Protein‐protein and peptide‐protein docking and refinement using ATTRACT in CAPRI , 2017, Proteins.

[30]  Dima Kozakov,et al.  The ClusPro web server for protein–protein docking , 2017, Nature Protocols.

[31]  Isaure Chauvot de Beauchêne,et al.  A web interface for easy flexible protein-protein docking with ATTRACT. , 2015, Biophysical journal.

[32]  Marco Cuturi,et al.  Sinkhorn Distances: Lightspeed Computation of Optimal Transport , 2013, NIPS.

[33]  Christian L'eonard A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.

[34]  Ruth Nussinov,et al.  An integrated suite of fast docking algorithms , 2010, Proteins.

[35]  Stephen J. Wright,et al.  Data assimilation in weather forecasting: a case study in PDE-constrained optimization , 2009 .

[36]  Ruth Nussinov,et al.  PatchDock and SymmDock: servers for rigid and symmetric docking , 2005, Nucleic Acids Res..

[37]  M. Yor DIFFUSIONS, MARKOV PROCESSES AND MARTINGALES: Volume 2: Itô Calculus , 1989 .

[38]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .

[39]  W. Kabsch A solution for the best rotation to relate two sets of vectors , 1976 .

[40]  S. Kullback Probability Densities with Given Marginals , 1968 .