Implementation of New Strategies in Multidimensional Compressive Imaging

Implementation of New Strategies in Multidimensional Compressive Imaging

[1]  Richard G. Baraniuk,et al.  A simple proof that random matrices are democratic , 2009, ArXiv.

[2]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[3]  Amit Ashok,et al.  Compressive imaging: hybrid measurement basis design. , 2011, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  Aswin C. Sankaranarayanan,et al.  CS-MUVI: Video compressive sensing for spatial-multiplexing cameras , 2012, 2012 IEEE International Conference on Computational Photography (ICCP).

[5]  Richard G. Baraniuk,et al.  Democracy in Action: Quantization, Saturation, and Compressive Sensing , 2011 .

[6]  Lina Xu,et al.  Compressive Echelle spectroscopy , 2011, Optical Engineering + Applications.

[7]  Richard G. Baraniuk,et al.  Compressive imaging for video representation and coding , 2006 .

[8]  Shree K. Nayar,et al.  Multiplexing for Optimal Lighting , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Richard G. Baraniuk,et al.  The STONE Transform: Multi-Resolution Image Enhancement and Real-Time Compressive Video , 2013, ArXiv.

[10]  Junfeng Yang,et al.  Practical compressive sensing with Toeplitz and circulant matrices , 2010, Visual Communications and Image Processing.

[11]  Holger Rauhut Stability Results for Random Sampling of Sparse Trigonometric Polynomials , 2008, IEEE Transactions on Information Theory.

[12]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[13]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[14]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[15]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[16]  Michael Elad,et al.  Sparse and Redundant Representations - From Theory to Applications in Signal and Image Processing , 2010 .

[17]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[18]  Wotao Yin,et al.  An Iterative Regularization Method for Total Variation-Based Image Restoration , 2005, Multiscale Model. Simul..

[19]  Gene H. Golub,et al.  A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..

[20]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[21]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[22]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[23]  Valeria Ruggiero,et al.  On the Convergence of Primal–Dual Hybrid Gradient Algorithms for Total Variation Image Restoration , 2012, Journal of Mathematical Imaging and Vision.

[24]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[25]  Robert H. Walden,et al.  Analog-to-digital converter survey and analysis , 1999, IEEE J. Sel. Areas Commun..

[26]  Michael B. Wakin,et al.  A multiscale framework for Compressive Sensing of video , 2009, 2009 Picture Coding Symposium.

[27]  E.J. Candes Compressive Sampling , 2022 .

[28]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[29]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[30]  José M. Bioucas-Dias,et al.  A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration , 2007, IEEE Transactions on Image Processing.

[31]  R. DeVore,et al.  Nonlinear approximation , 1998, Acta Numerica.

[32]  David L. Donoho,et al.  Neighborly Polytopes And Sparse Solution Of Underdetermined Linear Equations , 2005 .

[33]  Namrata Vaswani,et al.  Kalman filtered Compressed Sensing , 2008, 2008 15th IEEE International Conference on Image Processing.

[34]  James E. Fowler,et al.  Residual Reconstruction for Block-Based Compressed Sensing of Video , 2011, 2011 Data Compression Conference.

[35]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[36]  Rama Chellappa,et al.  Compressive Acquisition of Dynamic Scenes , 2010, ECCV.

[37]  Chengbo Li,et al.  Compressive hyperspectral acquisition and endmember unmixing , 2011, Optical Engineering + Applications.

[38]  Lina Xu SWIR Imaging and Echelle Spectroscopy via Compressive Sensing , 2012 .

[39]  R.G. Baraniuk,et al.  Compressive Sensing [Lecture Notes] , 2007, IEEE Signal Processing Magazine.

[40]  Chengbo Li An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing , 2010 .

[41]  Emmanuel J. Candès,et al.  Quantitative Robust Uncertainty Principles and Optimally Sparse Decompositions , 2004, Found. Comput. Math..

[42]  Michael Elad,et al.  From Sparse Solutions of Systems of Equations to Sparse Modeling of Signals and Images , 2009, SIAM Rev..

[43]  Stanley Osher,et al.  A Unified Primal-Dual Algorithm Framework Based on Bregman Iteration , 2010, J. Sci. Comput..

[44]  N. Sloane,et al.  Hadamard transform optics , 1979 .

[45]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[46]  Wotao Yin,et al.  Learning Circulant Sensing Kernels , 2014 .

[47]  Ce Liu,et al.  Exploring new representations and applications for motion analysis , 2009 .

[48]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[49]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[50]  Yin Zhang On Theory of Compressive Sensing via L_1-Minimization: Simple Derivations and Extensions , 2008 .

[51]  José M. Bioucas-Dias,et al.  Two-Step Algorithms for Linear Inverse Problems with Non-Quadratic Regularization , 2007, 2007 IEEE International Conference on Image Processing.

[52]  Wotao Yin,et al.  Second-order Cone Programming Methods for Total Variation-Based Image Restoration , 2005, SIAM J. Sci. Comput..