Multi-objective parameter configuration of machine learning algorithms using model-based optimization

The performance of many machine learning algorithms heavily depends on the setting of their respective hyperparameters. Many different tuning approaches exist, from simple grid or random search approaches to evolutionary algorithms and Bayesian optimization. Often, these algorithms are used to optimize a single performance criterion. But in practical applications, a single criterion may not be sufficient to adequately characterize the behavior of the machine learning method under consideration and the Pareto front of multiple criteria has to be considered. We propose to use model-based multi-objective optimization to efficiently approximate such Pareto fronts.

[1]  J. Gower A General Coefficient of Similarity and Some of Its Properties , 1971 .

[2]  Yaochu Jin,et al.  Surrogate-assisted evolutionary computation: Recent advances and future challenges , 2011, Swarm Evol. Comput..

[3]  Jonathan E. Fieldsend,et al.  Multi-class ROC analysis from a multi-objective optimisation perspective , 2006, Pattern Recognit. Lett..

[4]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[5]  Bernd Bischl,et al.  Model-Based Multi-objective Optimization: Taxonomy, Multi-Point Proposal, Toolbox and Benchmark , 2015, EMO.

[6]  Carlos M. Fonseca,et al.  The Attainment-Function Approach to Stochastic Multiobjective Optimizer Assessment and Comparison , 2010, Experimental Methods for the Analysis of Optimization Algorithms.

[7]  Bernd Bischl,et al.  A comparative study on large scale kernelized support vector machines , 2016, Adv. Data Anal. Classif..

[8]  Leslie Pérez Cáceres,et al.  The irace package: Iterated racing for automatic algorithm configuration , 2016 .

[9]  Luís Torgo,et al.  OpenML: networked science in machine learning , 2014, SKDD.

[10]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[11]  Bernd Bischl,et al.  mlrMBO: A Toolbox for Model-Based Optimization of Expensive Black-Box Functions , 2016 .

[12]  Thomas Bartz-Beielstein,et al.  A Case Study on Multi-Criteria Optimization of an Event Detection Software under Limited Budgets , 2013, EMO.

[13]  Bernd Bischl,et al.  Tuning and evolution of support vector kernels , 2012, Evol. Intell..

[14]  Michael T. M. Emmerich,et al.  Hypervolume-based expected improvement: Monotonicity properties and exact computation , 2011, 2011 IEEE Congress of Evolutionary Computation (CEC).

[15]  Wolfgang Ponweiser,et al.  Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted -Metric Selection , 2008, PPSN.

[16]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[17]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[18]  Thomas Bäck,et al.  Efficient multi-criteria optimization on noisy machine learning problems , 2015, Appl. Soft Comput..

[19]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[20]  Ludwig Lausser,et al.  Multi-Objective Parameter Selection for Classifiers , 2012 .

[21]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[22]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[23]  Bernd Bischl,et al.  Automatic model selection for high-dimensional survival analysis , 2015 .

[24]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[25]  Shiyu Zhou,et al.  A Simple Approach to Emulation for Computer Models With Qualitative and Quantitative Factors , 2011, Technometrics.

[26]  Donald R. Jones,et al.  A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..

[27]  Bernd Bischl,et al.  BatchJobs and BatchExperiments: Abstraction Mechanisms for Using R in Batch Environments , 2015 .

[28]  Bernhard Sendhoff,et al.  Generalization Improvement in Multi-Objective Learning , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[29]  Yaochu Jin,et al.  Multi-Objective Machine Learning , 2006, Studies in Computational Intelligence.