Holographic optical tweezers: manipulations at an air-liquid interface

By performing experiments at an air-water interface, we operate Holographic Optical Tweezers in a qualitatively new environment. In this regime, trapping and moving of micro particles may allow access to parameters like local viscosity and surface tension. Polystyrene micro beads are naturally stabilized in the interface due to a minimum in surface energy. For this reason, they can also be manipulated by light patterns with small axial field gradients, without causing the particles to escape due to scattering forces. In this manner, the interface provides a true two-dimensional "working environment", where particles can be manipulated with high effciency. For example, we demonstrate different optical "micro tools", which utilize scattering and gradient forces to enable controlled transport of matter within the surface.

[1]  P. T. Korda,et al.  Kinetically locked-in colloidal transport in an array of optical tweezers. , 2002, Physical review letters.

[2]  H. Tiziani,et al.  Multi-functional optical tweezers using computer-generated holograms , 2000 .

[3]  David G Grier,et al.  Structure of optical vortices. , 2003, Physical review letters.

[4]  Alexander Jesacher,et al.  Size selective trapping with optical "cogwheel" tweezers. , 2004, Optics express.

[5]  D. Grier,et al.  Optical tweezer arrays and optical substrates created with diffractive optics , 1998 .

[6]  Jing-Liang He,et al.  Optimal annulus structures of optical vortices. , 2004, Optics express.

[7]  Alexander Jesacher,et al.  Diffractive optical tweezers in the Fresnel regime. , 2004, Optics express.

[8]  D. Grier,et al.  Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. , 2004, Optics express.

[9]  S. Bernet,et al.  Optical measurement of surface tension in a miniaturized air-liquid interface and its application in lung physiology. , 2005, Biophysical journal.

[10]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[11]  Steven M Block,et al.  Resource Letter: LBOT-1: Laser-based optical tweezers. , 2003, American journal of physics.

[12]  Jesper Gluckstad,et al.  Fully dynamic multiple-beam optical tweezers. , 2002, Optics express.

[13]  D. Grier A revolution in optical manipulation , 2003, Nature.

[14]  Ajay Gopinathan,et al.  Statistically locked-in transport through periodic potential landscapes. , 2004, Physical review letters.

[15]  Joachim P Spatz,et al.  Symmetry dependence of holograms for optical trapping. , 2005, Optics letters.

[16]  Eirini Theofanidou,et al.  High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay. , 2003, Optics express.

[17]  D. Burnham,et al.  Holographic optical trapping of aerosol droplets. , 2006, Optics express.

[18]  David G. Grier,et al.  Colloidal hydrodynamic coupling in concentric optical vortices , 2005 .

[19]  D. Burnham,et al.  Holographic optical trapping of aerosol droplets. , 2006, Optics express.

[20]  Alexander Jesacher,et al.  Holographic optical tweezers for object manipulations at an air-liquid surface. , 2006, Optics express.