The influence of semantics on the visual processing of natural scenes

[1]  Roel M. Willems,et al.  Seeing and Hearing Meaning: ERP and fMRI Evidence of Word versus Picture Integration into a Sentence Context , 2008, Journal of Cognitive Neuroscience.

[2]  Wayne D. Gray,et al.  Basic objects in natural categories , 1976, Cognitive Psychology.

[3]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[4]  Li Fei-Fei,et al.  Differential Connectivity Within the Parahippocampal Place Area , 2013 .

[5]  B. Mesquita,et al.  Adjustment to Chronic Diseases and Terminal Illness Health Psychology : Psychological Adjustment to Chronic Disease , 2006 .

[6]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.

[7]  Alfonso Caramazza,et al.  The multiple semantics hypothesis: Multiple confusions? , 1990 .

[8]  Alexis Amadon,et al.  Word meaning in the ventral visual path: a perceptual to conceptual gradient of semantic coding , 2016, NeuroImage.

[9]  W. Glaser Picture naming , 1992, Cognition.

[10]  Marta Kutas,et al.  Time Course of Processes and Representations Supporting Visual Object Identification and Memory , 2003, Journal of Cognitive Neuroscience.

[11]  E. Tulving,et al.  Unilateral medial temporal lobe memory impairment: type deficit, function deficit, or both? , 1998, Neuropsychologia.

[12]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[13]  Abel G. Oliva,et al.  Gist of a scene , 2005 .

[14]  M. Bar,et al.  Cortical Analysis of Visual Context , 2003, Neuron.

[15]  N. Kanwisher,et al.  PSYCHOLOGICAL SCIENCE Research Article Visual Recognition As Soon as You Know It Is There, You Know What It Is , 2022 .

[16]  D. Delis,et al.  Hemispheric specialization of memory for visual hierarchical stimuli , 1986, Neuropsychologia.

[17]  Marta Kutas,et al.  Neurophysiological Evidence for the Time Course of Activation of Global Shape, Part, and Local Contour Representations during Visual Object Categorization and Memory , 2007, Journal of Cognitive Neuroscience.

[18]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[19]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Dirk B. Walther,et al.  Natural Scene Categories Revealed in Distributed Patterns of Activity in the Human Brain , 2009, The Journal of Neuroscience.

[21]  Thomas Serre,et al.  A feedforward architecture accounts for rapid categorization , 2007, Proceedings of the National Academy of Sciences.

[22]  B. Breitmeyer,et al.  Recent models and findings in visual backward masking: A comparison, review, and update , 2000, Perception & psychophysics.

[23]  N. Kanwisher,et al.  Recognition alters the spatial pattern of FMRI activation in early retinotopic cortex. , 2010, Journal of neurophysiology.

[24]  Mark S. Seidenberg,et al.  Semantic feature production norms for a large set of living and nonliving things , 2005, Behavior research methods.

[25]  Irene P. Kan,et al.  ROLE OF MENTAL IMAGERY IN A PROPERTY VERIFICATION TASK: FMRI EVIDENCE FOR PERCEPTUAL REPRESENTATIONS OF CONCEPTUAL KNOWLEDGE , 2003, Cognitive neuropsychology.

[26]  James W. Tanaka,et al.  A Reevaluation of the Electrophysiological Correlates of Expert Object Processing , 2006, Journal of Cognitive Neuroscience.

[27]  Kara D. Federmeier,et al.  A Rose by Any Other Name: Long-Term Memory Structure and Sentence Processing , 1999 .

[28]  Su Keun Jeong,et al.  Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex , 2016, The Journal of Neuroscience.

[29]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[30]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[31]  Ferath Kherif,et al.  Automatic Top-Down Processing Explains Common Left Occipito-Temporal Responses to Visual Words and Objects , 2010, Cerebral cortex.

[32]  M. Kutas In the company of other words: Electrophysiological evidence for single-word and sentence context effects , 1993 .

[33]  Alex Martin,et al.  Semantic memory and the brain: structure and processes , 2001, Current Opinion in Neurobiology.

[34]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[35]  J. Wolfe,et al.  Differential Electrophysiological Signatures of Semantic and Syntactic Scene Processing , 2013, Psychological science.

[36]  Tom M. Mitchell,et al.  From the SelectedWorks of Marcel Adam Just 2011 Commonality of neural representations of words and pictures , 2016 .

[37]  L. Tyler,et al.  Representational Similarity Analysis Reveals Commonalities and Differences in the Semantic Processing of Words and Objects , 2013, The Journal of Neuroscience.

[38]  Li Fei-Fei,et al.  Two distinct scene processing networks connecting vision and memory , 2016, bioRxiv.

[39]  M. Koivisto,et al.  Recurrent Processing in V1/V2 Contributes to Categorization of Natural Scenes , 2011, The Journal of Neuroscience.

[40]  Lester C. Loschky,et al.  The natural/man-made distinction is made before basic-level distinctions in scene gist processing , 2010 .

[41]  L. Tyler,et al.  Object-Specific Semantic Coding in Human Perirhinal Cortex , 2014, The Journal of Neuroscience.

[42]  Chaz Firestone,et al.  " Top-down " Effects Where None Should Be Found: the El Greco Fallacy in Perception Research , 2022 .

[43]  Li Su,et al.  A Toolbox for Representational Similarity Analysis , 2014, PLoS Comput. Biol..

[44]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[45]  S. Thompson-Schill Neuroimaging studies of semantic memory: inferring “how” from “where” , 2003, Neuropsychologia.

[46]  C. Honey,et al.  Hierarchical process memory: memory as an integral component of information processing , 2015, Trends in Cognitive Sciences.

[47]  Kara D. Federmeier,et al.  Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). , 2011, Annual review of psychology.

[48]  J. S. Guntupalli,et al.  The Representation of Biological Classes in the Human Brain , 2012, The Journal of Neuroscience.

[49]  S. Bentin,et al.  Domain specificity versus expertise: factors influencing distinct processing of faces , 2002, Cognition.

[50]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[51]  Robert Oostenveld,et al.  Modality-independent decoding of semantic information from the human brain. , 2014, Cerebral cortex.

[52]  Antonio Torralba,et al.  Building the gist of a scene: the role of global image features in recognition. , 2006, Progress in brain research.

[53]  Z. Pylyshyn Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. , 1999, The Behavioral and brain sciences.

[54]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[55]  Philippe G. Schyns,et al.  Beyond Gist , 2014, Psychological science.

[56]  M. L. Lambon Ralph,et al.  Generalization and Differentiation in Semantic Memory , 2008, Annals of the New York Academy of Sciences.

[57]  Raymond J. Dolan,et al.  fMRI Activity Patterns in Human LOC Carry Information about Object Exemplars within Category , 2008, Journal of Cognitive Neuroscience.

[58]  Fei-Fei Li,et al.  Differential connectivity within the Parahippocampal Place Area , 2013, NeuroImage.

[59]  J. Haxby,et al.  Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects , 1999, Nature Neuroscience.

[60]  M. Bar,et al.  Magnocellular Projections as the Trigger of Top-Down Facilitation in Recognition , 2007, The Journal of Neuroscience.

[61]  Zenon W. Pylyshyn,et al.  What the Mind’s Eye Tells the Mind’s Brain: A Critique of Mental Imagery , 1973 .

[62]  S. Luck,et al.  The Oxford handbook of event-related potential components , 2011 .

[63]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[64]  Richard J. Binney,et al.  The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. , 2010, Cerebral cortex.

[65]  S. Kosslyn,et al.  Brain areas underlying visual mental imagery and visual perception: an fMRI study. , 2004, Brain research. Cognitive brain research.

[66]  William W. Graves,et al.  Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. , 2009, Cerebral cortex.

[67]  C. Price The anatomy of language: contributions from functional neuroimaging , 2000, Journal of anatomy.

[68]  Richard D. Morey,et al.  Confidence Intervals from Normalized Data: A correction to Cousineau (2005) , 2008 .

[69]  Allan Paivio,et al.  Language and Knowledge of the World1 , 1974 .

[70]  Li Fei-Fei,et al.  Evidence for similar patterns of neural activity elicited by picture- and word-based representations of natural scenes , 2017, NeuroImage.

[71]  M. Mesulam,et al.  Words and objects at the tip of the left temporal lobe in primary progressive aphasia. , 2013, Brain : a journal of neurology.

[72]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[73]  P. Dupont,et al.  Similarity of fMRI Activity Patterns in Left Perirhinal Cortex Reflects Semantic Similarity between Words , 2013, The Journal of Neuroscience.

[74]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[75]  Alexander G. Huth,et al.  Attention During Natural Vision Warps Semantic Representation Across the Human Brain , 2013, Nature Neuroscience.

[76]  Sayan Mukherjee,et al.  Permutation Tests for Classification , 2005, COLT.

[77]  A. Caramazza,et al.  Brain Regions That Represent Amodal Conceptual Knowledge , 2013, The Journal of Neuroscience.

[78]  S. Luck,et al.  Sources of attention-sensitive visual event-related potentials , 2005, Brain Topography.

[79]  Simon Dennis,et al.  ERP ‘old/new’ effects: memory strength and decisional factor(s) , 2002, Neuropsychologia.

[80]  L. Fadiga,et al.  Active perception: sensorimotor circuits as a cortical basis for language , 2010, Nature Reviews Neuroscience.

[81]  Karen M. Evans,et al.  The memory that's right and the memory that's left: Event-related potentials reveal hemispheric asymmetries in the encoding and retention of verbal information , 2007, Neuropsychologia.

[82]  P. Perona,et al.  Rapid natural scene categorization in the near absence of attention , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[83]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[84]  Aiden E. G. F. Arnold,et al.  Spatial and temporal functional connectivity changes between resting and attentive states , 2015, Human brain mapping.

[85]  Christine D. Wilson,et al.  Grounding conceptual knowledge in modality-specific systems , 2003, Trends in Cognitive Sciences.

[86]  Daniel C. Javitt,et al.  Impairments in generation of early-stage transient visual evoked potentials to magno- and parvocellular-selective stimuli in schizophrenia , 2005, Clinical Neurophysiology.

[87]  Yuan Chang Leong,et al.  Shared memories reveal shared structure in neural activity across individuals , 2016, Nature Neuroscience.

[88]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[89]  Elizabeth Jefferies,et al.  Semantic Processing in the Anterior Temporal Lobes: A Meta-analysis of the Functional Neuroimaging Literature , 2010, Journal of Cognitive Neuroscience.

[90]  Li Fei-Fei,et al.  Categorization influences detection: A perceptual advantage for representative exemplars of natural scene categories , 2017, Journal of vision.

[91]  Christopher A. Baldassano,et al.  Pinpointing the peripheral bias in neural scene-processing networks during natural viewing. , 2016, Journal of vision.

[92]  Dirk B. Walther,et al.  Good Exemplars of Natural Scene Categories Elicit Clearer Patterns than Bad Exemplars but Not Greater BOLD Activity , 2013, PloS one.

[93]  P. Dupont,et al.  Left perirhinal cortex codes for similarity in meaning between written words: Comparison with auditory word input , 2015, Neuropsychologia.

[94]  M. Kutas,et al.  Reading senseless sentences: brain potentials reflect semantic incongruity. , 1980, Science.

[95]  Guillaume A. Rousselet,et al.  Parallel processing in high-level categorization of natural images , 2002, Nature Neuroscience.

[96]  Gary H. Glover,et al.  Reducing inter-scanner variability of activation in a multicenter fMRI study: Role of smoothness equalization , 2006, NeuroImage.

[97]  Nigam,et al.  N400 to Semantically Anomalous Pictures and Words , 1992, Journal of Cognitive Neuroscience.

[98]  Karl J. Friston,et al.  Modelling event-related responses in the brain , 2005, NeuroImage.

[99]  N. Kanwisher,et al.  Mental Imagery of Faces and Places Activates Corresponding Stimulus-Specific Brain Regions , 2000, Journal of Cognitive Neuroscience.

[100]  Michelle R. Greene,et al.  Recognition of natural scenes from global properties: Seeing the forest without representing the trees , 2009, Cognitive Psychology.

[101]  D. Montaldi,et al.  The neural system that mediates familiarity memory , 2006, Hippocampus.

[102]  M. Farah,et al.  A functional MRI study of mental image generation , 1997, Neuropsychologia.

[103]  Kara D. Federmeier,et al.  Meaning and modality: influences of context, semantic memory organization, and perceptual predictability on picture processing. , 2001, Journal of experimental psychology. Learning, memory, and cognition.

[104]  Reinhard Pietrowsky,et al.  Event-Related Brain Potentials during Identification of Tachistoscopically Presented Pictures , 1996, Brain and Cognition.

[105]  Phillip J. Holcomb,et al.  Two Neurocognitive Mechanisms of Semantic Integration during the Comprehension of Visual Real-world Events , 2008, Journal of Cognitive Neuroscience.

[106]  Ken McRae,et al.  Category - Specific semantic deficits , 2008 .

[107]  M. Kutas,et al.  Neurophysiological evidence for two processing times for visual object identification , 2002, Neuropsychologia.

[108]  P. Holcomb,et al.  Event-Related Brain Potentials Reflect Semantic Priming in an Object Decision Task , 1994, Brain and Cognition.

[109]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[110]  Marta Kutas,et al.  A Common Neural Progression to Meaning in About a Third of a Second , 2015 .

[111]  Richard S. J. Frackowiak,et al.  Functional anatomy of a common semantic system for words and pictures , 1996, Nature.

[112]  Olivier R. Joubert,et al.  How long to get to the “gist” of real-world natural scenes? , 2005 .

[113]  David A. Medler,et al.  Distinct Brain Systems for Processing Concrete and Abstract Concepts , 2005, Journal of Cognitive Neuroscience.

[114]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[115]  Kingson Man,et al.  Multivariate cross-classification: applying machine learning techniques to characterize abstraction in neural representations , 2015, Front. Hum. Neurosci..