The theory of linear programming:skew symmetric self-dual problems and the central path *

The literature in the field of interior point methods for linear programming has been almost exclusively algorithm oriented. Recently Guler, Roos, Terlaky and Vial presented a complete duality theory for linear programming based on the interior point approach. In this paper we present a more simple approach which is based on an embedding of the primal problem and its dual into a skew symmetric self-dual problem. This embedding is essentially due Ye, Todd and Mizuno First we consider a skew symmetric self-dual linear program. We show that the strong duality theorem trivally holds in this case. Then, using the logarithmic barrier problem and the central path, the existence of a strictly complementary optimal solution is proved. Using the embedding just described, we easily obtain the strong duality theorem and the existence of strictly complementary optimal solutions for general linear programming problems