Uncertainty relations: An operational approach to the error-disturbance tradeoff

The notions of error and disturbance appearing in quantum uncertainty relations are often quantified by the discrepancy of a physical quantity from its ideal value. However, these real and ideal values are not the outcomes of simultaneous measurements, and comparing the values of unmeasured observables is not necessarily meaningful according to quantum theory. To overcome these conceptual difficulties, we take a different approach and define error and disturbance in an operational manner. In particular, we formulate both in terms of the probability that one can successfully distinguish the actual measurement device from the relevant hypothetical ideal by any experimental test whatsoever. This definition itself does not rely on the formalism of quantum theory, avoiding many of the conceptual difficulties of usual definitions. We then derive new Heisenberg-type uncertainty relations for both joint measurability and the error-disturbance tradeoff for arbitrary observables of finite-dimensional systems, as well as for the case of position and momentum. Our relations may be directly applied in information processing settings, for example to infer that devices which can faithfully transmit information regarding one observable do not leak any information about conjugate observables to the environment. We also show that Englert's wave-particle duality relation [PRL 77, 2154 (1996)] can be viewed as an error-disturbance uncertainty relation.

[1]  A. Ipsen Error-disturbance relations for finite dimensional systems , 2013, 1311.0259.

[2]  Concept of Experimental Accuracy and Simultaneous Measurements of Position and Momentum , 1998, quant-ph/9803046.

[3]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[4]  William K. Wootters,et al.  A ‘Pretty Good’ Measurement for Distinguishing Quantum States , 1994 .

[5]  Maassen,et al.  Generalized entropic uncertainty relations. , 1988, Physical review letters.

[6]  Paul Busch,et al.  Measurement uncertainty relations , 2013, 1312.4392.

[7]  W. Stinespring Positive functions on *-algebras , 1955 .

[8]  A. Toigo,et al.  Measurement Uncertainty Relations for Discrete Observables: Relative Entropy Formulation , 2016, Communications in Mathematical Physics.

[9]  B. Englert,et al.  Fringe Visibility and Which-Way Information: An Inequality. , 1996, Physical review letters.

[10]  On fuzzy spin spaces , 1977 .

[11]  R. F. Werner Quantum Information Theory - an Invitation , 2001 .

[12]  J. Wheeler,et al.  Quantum theory and measurement , 1983 .

[13]  Patrick J. Coles,et al.  State-dependent approach to entropic measurement–disturbance relations , 2013, 1311.7637.

[14]  R. Werner,et al.  A Continuity Theorem for Stinespring's Dilation , 2007, 0710.2495.

[15]  А Е Китаев,et al.  Квантовые вычисления: алгоритмы и исправление ошибок@@@Quantum computations: algorithms and error correction , 1997 .

[16]  H. P. Robertson The Uncertainty Principle , 1929 .

[17]  Massimiliano F. Sacchi,et al.  Entanglement can enhance the distinguishability of entanglement-breaking channels , 2005 .

[18]  Reinhard F. Werner The uncertainty relation for joint measurement of position and momentum , 2004, Quantum Inf. Comput..

[19]  W. D. Muynck,et al.  Towards a new uncertainty principle : quantum measurement noise , 1991 .

[20]  M. Ozawa Disproving Heisenberg's error-disturbance relation , 2013, 1308.3540.

[21]  Florian Richter,et al.  Algebraic approach to quantum theory: a finite-dimensional guide , 2015, 1505.03106.

[22]  Marco Tomamichel,et al.  Tight finite-key analysis for quantum cryptography , 2011, Nature Communications.

[23]  N. Langford,et al.  Distance measures to compare real and ideal quantum processes (14 pages) , 2004, quant-ph/0408063.

[24]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[25]  Masanao Ozawa Uncertainty relations for noise and disturbance in generalized quantum measurements , 2003 .

[26]  Vladimir B. Braginsky,et al.  Quantum Measurement , 1992 .

[27]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[28]  S. T. Ali,et al.  Systems of imprimitivity and representations of quantum mechanics on fuzzy phase spaces , 1977 .

[29]  Patrick J. Coles,et al.  Equivalence of wave–particle duality to entropic uncertainty , 2014, Nature Communications.

[30]  R. Renner,et al.  Uncertainty relation for smooth entropies. , 2010, Physical review letters.

[31]  Patrick J. Coles Entropic framework for wave-particle duality in multipath interferometers , 2015, 1512.09081.

[32]  T. Rudolph,et al.  Operational constraints on state-dependent formulations of quantum error-disturbance trade-off relations , 2013, 1311.5506.

[33]  R. Werner,et al.  Colloquium: Quantum root-mean-square error and measurement uncertainty relations , 2013, 1312.4393.

[34]  Goodman,et al.  Quantum correlations: A generalized Heisenberg uncertainty relation. , 1988, Physical review letters.

[35]  Shiro Ishikawa,et al.  Uncertainty relations in simultaneous measurements for arbitrary observables , 1991 .

[36]  R. Werner,et al.  Heisenberg uncertainty for qubit measurements , 2013, 1311.0837.

[37]  R. Werner,et al.  Proof of Heisenberg's error-disturbance relation. , 2013, Physical review letters.

[38]  Joseph M. Renes,et al.  THE PHYSICS OF QUANTUM INFORMATION: COMPLEMENTARITY, UNCERTAINTY, AND ENTANGLEMENT , 2012, 1212.2379.

[39]  Joseph M. Renes,et al.  Duality of privacy amplification against quantum adversaries and data compression with quantum side information , 2010, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  John Watrous,et al.  Simpler semidefinite programs for completely bounded norms , 2012, Chic. J. Theor. Comput. Sci..

[41]  J. Boileau,et al.  Conjectured strong complementary information tradeoff. , 2008, Physical review letters.

[42]  C. Branciard Error-tradeoff and error-disturbance relations for incompatible quantum measurements , 2013, Proceedings of the National Academy of Sciences.

[43]  Masahito Ueda,et al.  Quantum Estimation Theory of Error and Disturbance in Quantum Measurement , 2011, 1106.2526.

[44]  John Watrous,et al.  Semidefinite Programs for Completely Bounded Norms , 2009, Theory Comput..

[45]  W. D. Muynck,et al.  Disturbance, conservation laws and the uncertainty principle , 1992 .

[46]  Dennis Kretschmann,et al.  The Information-Disturbance Tradeoff and the Continuity of Stinespring's Representation , 2008, IEEE Transactions on Information Theory.

[47]  M. Raymer Uncertainty principle for joint measurement of noncommuting variables , 1994 .

[48]  C. Y. She,et al.  Simultaneous Measurement of Noncommuting Observables , 1966 .

[49]  Patrick J. Coles,et al.  Entropic uncertainty relations and their applications , 2015, 1511.04857.

[50]  Patrick J. Coles,et al.  Improved entropic uncertainty relations and information exclusion relations , 2013, 1307.4265.

[51]  H. Paul,et al.  Uncertainty relations for realistic joint measurements of position and momentum in quantum optics , 1995 .

[52]  Yu Watanabe Quantum Estimation Theory , 2014 .

[53]  J. L. Kelly,et al.  B.S.T.J. briefs: On the simultaneous measurement of a pair of conjugate observables , 1965 .

[54]  P. Busch,et al.  Unsharp reality and joint measurements for spin observables. , 1986, Physical review. D, Particles and fields.

[55]  M. Ozawa Universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in measurement , 2002, quant-ph/0207121.

[56]  M. Hall,et al.  Prior information: How to circumvent the standard joint-measurement uncertainty relation , 2003, quant-ph/0309091.

[57]  M. Sentís Quantum theory of open systems , 2002 .

[58]  Masanao Ozawa Uncertainty relations for joint measurements of noncommuting observables , 2004 .

[59]  Masanao Ozawa,et al.  Noise and disturbance in quantum measurements: an information-theoretic approach. , 2013, Physical review letters.

[60]  David Marcus Appleby,et al.  Quantum Errors and Disturbances: Response to Busch, Lahti and Werner , 2016, Entropy.

[61]  V. Belavkin Optimal multiple quantum statistical hypothesis testing , 1975 .

[62]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[63]  Takahiro Sagawa,et al.  Uncertainty relation revisited from quantum estimation theory , 2010, 1010.3571.

[64]  J. Renes Uncertainty relations and approximate quantum error correction , 2016, 1605.01420.

[65]  Paul Busch,et al.  Indeterminacy relations and simultaneous measurements in quantum theory , 1985 .