Vascular endothelial growth factor acts primarily via platelet-derived growth factor receptor α to promote proliferative vitreoretinopathy.

[1]  D. Eliott,et al.  Is neutralizing vitreal growth factors a viable strategy to prevent proliferative vitreoretinopathy? , 2014, Progress in Retinal and Eye Research.

[2]  J. Pastor,et al.  The T309G MDM2 Gene Polymorphism Is a Novel Risk Factor for Proliferative Vitreoretinopathy , 2013, PloS one.

[3]  Shizuo Mukai,et al.  Simple, Inexpensive Technique for High-Quality Smartphone Fundus Photography in Human and Animal Eyes , 2013, Journal of ophthalmology.

[4]  S. Mukai,et al.  Ranibizumab is a potential prophylaxis for proliferative vitreoretinopathy, a nonangiogenic blinding disease. , 2013, The American journal of pathology.

[5]  J. Pastor,et al.  A genetic case-control study confirms the implication of SMAD7 and TNF locus in the development of proliferative vitreoretinopathy. , 2013, Investigative ophthalmology & visual science.

[6]  J. Pastor,et al.  The p53 codon 72 polymorphism (rs1042522) is associated with proliferative vitreoretinopathy: the Retina 4 Project. , 2013, Ophthalmology.

[7]  A. Kazlauskas,et al.  SU9518 inhibits proliferative vitreoretinopathy in fibroblast and genetically modified Müller cell-induced rabbit models. , 2013, Investigative ophthalmology & visual science.

[8]  S. Koch,et al.  Signal transduction by vascular endothelial growth factor receptors. , 2012, Cold Spring Harbor perspectives in medicine.

[9]  S. Mukai,et al.  A novel function of p53: a gatekeeper of retinal detachment. , 2012, The American journal of pathology.

[10]  A. Kazlauskas,et al.  Vascular Endothelial Growth Factor A Competitively Inhibits Platelet-Derived Growth Factor (PDGF)-Dependent Activation of PDGF Receptor and Subsequent Signaling Events and Cellular Responses , 2012, Molecular and Cellular Biology.

[11]  K. Alitalo,et al.  The lymphatic vasculature in disease , 2011, Nature Medicine.

[12]  S. Mukai,et al.  Expression of PDGFRα is a determinant of the PVR potential of ARPE19 cells. , 2011, Investigative ophthalmology & visual science.

[13]  Raymond L. M. Wong,et al.  Apoptosis and Other Cell Death Mechanisms after Retinal Detachment: Implications for Photoreceptor Rescue , 2011, Ophthalmologica.

[14]  S. Mukai,et al.  A novel strategy to develop therapeutic approaches to prevent proliferative vitreoretinopathy. , 2011, The American journal of pathology.

[15]  A. Kazlauskas,et al.  Pathological Signaling via Platelet-Derived Growth Factor Receptor α Involves Chronic Activation of Akt and Suppression of p53 , 2011, Molecular and Cellular Biology.

[16]  Joan W. Miller,et al.  Receptor interacting protein kinases mediate retinal detachment-induced photoreceptor necrosis and compensate for inhibition of apoptosis , 2010, Proceedings of the National Academy of Sciences.

[17]  E. Margalit,et al.  The safety of intraocular linezolid in rabbits. , 2010, Investigative ophthalmology & visual science.

[18]  A. Kazlauskas,et al.  Recent developments in our understanding of how platelet-derived growth factor (PDGF) and its receptors contribute to proliferative vitreoretinopathy. , 2010, Experimental eye research.

[19]  J. Campisi,et al.  Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo , 2009, Nature Protocols.

[20]  A. Levine,et al.  The first 30 years of p53: growing ever more complex , 2009, Nature Reviews Cancer.

[21]  T. Hirose,et al.  Growth factors outside the PDGF family drive experimental PVR. , 2009, Investigative ophthalmology & visual science.

[22]  A. Kazlauskas,et al.  Growth Factors Outside of the Platelet-derived Growth Factor (PDGF) Family Employ Reactive Oxygen Species/Src Family Kinases to Activate PDGF Receptor α and Thereby Promote Proliferation and Survival of Cells* , 2009, Journal of Biological Chemistry.

[23]  J. Pastor,et al.  Non-complicated retinal detachment management: variations in 4 years. Retina 1 project; report 1 , 2008, British Journal of Ophthalmology.

[24]  R. Scott,et al.  Multiplex bead analysis of vitreous humor of patients with vitreoretinal disorders. , 2007, Investigative ophthalmology & visual science.

[25]  T. Hirose,et al.  A potential role for PDGF-C in experimental and clinical proliferative vitreoretinopathy. , 2007, Investigative ophthalmology & visual science.

[26]  D. Hinton,et al.  In vivo models of proliferative vitreoretinopathy , 2007, Nature Protocols.

[27]  M. Weger,et al.  Application of multiplex cytometric bead array technology for the measurement of angiogenic factors in the vitreous. , 2006, Molecular vision.

[28]  D. Charteris,et al.  Proliferative vitreoretinopathy: developments in pathogenesis and treatment. , 2006, Comprehensive ophthalmology update.

[29]  G. Jaffe,et al.  Prevalence and risk factors for proliferative vitreoretinopathy in eyes with rhegmatogenous retinal detachment but no previous vitreoretinal surgery. , 2004, American journal of ophthalmology.

[30]  L. Claesson‐Welsh,et al.  VEGF receptor signal transduction. , 2003, Science's STKE : signal transduction knowledge environment.

[31]  Y. Tano,et al.  Platelet-derived growth factor receptor kinase inhibitor AG1295 and inhibition of experimental proliferative vitreoretinopathy. , 2003, Japanese journal of ophthalmology.

[32]  M. Potter,et al.  Induction of proliferative vitreoretinopathy by a unique line of human retinal pigment epithelial cells. , 2002, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[33]  Christopher J. Robinson,et al.  The splice variants of vascular endothelial growth factor (VEGF) and their receptors. , 2001, Journal of cell science.

[34]  Y. Ikuno,et al.  Attenuation of experimental proliferative vitreoretinopathy by inhibiting the platelet-derived growth factor receptor. , 2000, Investigative ophthalmology & visual science.

[35]  M. Refojo,et al.  Platelet-derived growth factor plays a key role in proliferative vitreoretinopathy. , 1999, Investigative ophthalmology & visual science.

[36]  P. Khaw,et al.  Expression of vitreous cytokines in proliferative vitreoretinopathy: a prospective study. , 1999, Investigative ophthalmology & visual science.

[37]  H. Augustin,et al.  A novel vascular endothelial growth factor encoded by Orf virus, VEGF‐E, mediates angiogenesis via signalling through VEGFR‐2 (KDR) but not VEGFR‐1 (Flt‐1) receptor tyrosine kinases , 1999, The EMBO journal.

[38]  M. Shibuya,et al.  A Novel Type of Vascular Endothelial Growth Factor, VEGF-E (NZ-7 VEGF), Preferentially Utilizes KDR/Flk-1 Receptor and Carries a Potent Mitotic Activity without Heparin-binding Domain* , 1998, The Journal of Biological Chemistry.

[39]  D. Hall,et al.  The role of the p53 protein in the selective vulnerability of the inner retina to transient ischemia. , 1998, Investigative ophthalmology & visual science.

[40]  S. Azen,et al.  Post-traumatic proliferative vitreoretinopathy. The epidemiologic profile, onset, risk factors, and visual outcome. , 1997, Ophthalmology.

[41]  A. Levine p53, the Cellular Gatekeeper for Growth and Division , 1997, Cell.

[42]  P. Campochiaro,et al.  Pathogenic mechanisms in proliferative vitreoretinopathy. , 1997, Archives of ophthalmology.

[43]  M. Refojo,et al.  Retinoic acid in silicone and silicone-fluorosilicone copolymer oils in a rabbit model of proliferative vitreoretinopathy. , 1995, Investigative ophthalmology & visual science.

[44]  R. Adler,et al.  Apoptotic photoreceptor degeneration in experimental retinal detachment. , 1995, Investigative ophthalmology & visual science.

[45]  J. Robertson,et al.  Platelet-derived growth factor ligands and receptors immunolocalized in proliferative retinal diseases. , 1994, Investigative ophthalmology & visual science.

[46]  C. Heldin,et al.  Regulation of fibroblast-mediated collagen gel contraction by platelet-derived growth factor, interleukin-1 alpha and transforming growth factor-beta 1. , 1992, Journal of cell science.

[47]  B. Glaser,et al.  Proliferative vitreoretinopathy. The mechanism of development of vitreoretinal traction. , 1987, Ophthalmology.

[48]  P. Campochiaro,et al.  Intravitreal chemotactic and mitogenic activity. Implication of blood-retinal barrier breakdown. , 1986, Archives of ophthalmology.

[49]  R. Machemer,et al.  The classification of retinal detachment with proliferative vitreoretinopathy. , 1983, Ophthalmology.

[50]  N. Sorgente,et al.  A comparison of different cellular inocula in an experimental model of massive periretinal proliferation. , 1982, American journal of ophthalmology.

[51]  R. Masland,et al.  Retinal-induced sensitization of light-adapted rabbit photoreceptors , 1978, Brain Research.

[52]  J. Clarkson,et al.  A HISTOPATHOLOGIC REVIEW OF 168 CASES OF PRERETINAL MEMBRANE , 1977, American journal of ophthalmology.

[53]  T. Tomita,et al.  Studies on the mass receptor potential of the isolated frog retina. I. General properties of the response. , 1969, Vision research.

[54]  T. Wiesel,et al.  Analysis of the intraretinal electroretinogram in the intact cat eye , 1961, The Journal of physiology.

[55]  T. Wiesel,et al.  Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye , 1961, The Journal of physiology.

[56]  Y. Ikuno,et al.  TGFbeta1-dependent contraction of fibroblasts is mediated by the PDGFalpha receptor. , 2002, Investigative ophthalmology & visual science.

[57]  P. Gastaud,et al.  Growth factors in vitreous and subretinal fluid cells from patients with proliferative vitreoretinopathy. , 1993, Ophthalmic research.

[58]  T. Aaberg,et al.  An updated classification of retinal detachment with proliferative vitreoretinopathy. , 1991, American journal of ophthalmology.