21 cm limits on decaying dark matter and primordial black holes

Recently the Experiment to Detect the Global Epoch of Reionization Signature (EDGES) reported the detection of a 21cm absorption signal stronger than astrophysical expectations. In this paper we study the impact of radiation from dark matter (DM) decay and primordial black holes (PBH) on the 21cm radiation temperature in the reionization epoch, and impose a constraint on the decaying dark matter and PBH energy injection in the intergalactic medium, which can heat up neutral hydrogen gas and weaken the 21cm absorption signal. We consider decay channels DM$\rightarrow e^+e^-, \gamma\gamma$, $\mu^+\mu^-$, $b\bar{b}$ and the $10^{15-17}$g mass range for primordial black holes, and require the heating of the neutral hydrogen does not negate the 21cm absorption signal. For $e^+e^-$, $\gamma\gamma$ final states and PBH cases we find strong 21cm bounds that can be more stringent than the current extragalactic diffuse photon bounds. For the DM$\rightarrow e^+e^-$ channel, the lifetime bound is $\tau_{\rm DM}> 10^{27}$s for sub-GeV dark matter. The bound is $\tau_{\rm DM}\ge 10^{26}$s for sub-GeV DM$\rightarrow \gamma\gamma$ channel and reaches $10^{27}$s at MeV DM mass. For $b\bar{b}$ and $\mu^+\mu^-$ cases, the 21 cm constraint is better than all the existing constraints for $m_{\rm DM}<20$ GeV where the bound on $\tau_{\rm DM}\ge10^{26}$s. For both DM decay and primordial black hole cases, the 21cm bounds significantly improve over the CMB damping limits from Planck data.

[1]  Phillip Capper The Proceedings , 2020, International Arbitration: A Handbook.

[2]  B. Carr,et al.  Primordial Black Holes as Dark Matter: Recent Developments , 2020, Annual Review of Nuclear and Particle Science.

[3]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol , 2019, Chemical science.

[4]  J. Pradler,et al.  Room for New Physics in the Rayleigh-Jeans Tail of the Cosmic Microwave Background. , 2018, Physical review letters.

[5]  G. D'Amico,et al.  Bounds on Dark-Matter Annihilations from 21-cm Data. , 2018, Physical review letters.

[6]  D. Hooper,et al.  Severely Constraining Dark-Matter Interpretations of the 21-cm Anomaly. , 2018, Physical review letters.

[7]  Aviad Cohen,et al.  Constraining Baryon-Dark-Matter Scattering with the Cosmic Dawn 21-cm Signal. , 2018, Physical review letters.

[8]  Rennan Barkana,et al.  Possible interaction between baryons and dark-matter particles revealed by the first stars , 2018, Nature.

[9]  Alan E. E. Rogers,et al.  An absorption profile centred at 78 megahertz in the sky-averaged spectrum , 2018, Nature.

[10]  A. Loeb,et al.  A small amount of mini-charged dark matter could cool the baryons in the early Universe , 2018, Nature.

[11]  G. Holder,et al.  Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn , 2018, 1802.07432.

[12]  M. Raidal,et al.  Light primordial exotic compact objects as all dark matter , 2018, Physical Review D.

[13]  J. Lesgourgues,et al.  Exotic energy injection with ExoCLASS: application to the Higgs portal model and evaporating black holes , 2018, 1801.01871.

[14]  B. Dutta,et al.  Dark Matter Annihilation into Four-Body Final States and Implications for the AMS Antiproton Excess , 2017, 1709.07410.

[15]  M. Raidal,et al.  Primordial black hole constraints for extended mass functions , 2017, 1705.05567.

[16]  S. Watson,et al.  A preferred mass range for primordial black hole formation and black holes as dark matter revisited , 2017, 1703.04825.

[17]  B. Dutta,et al.  Planck constraint on relic primordial black holes , 2016, 1612.07738.

[18]  Y. Soreq,et al.  γ-ray Constraints on Decaying Dark Matter and Implications for IceCube. , 2016, Physical review letters.

[19]  W. Liu,et al.  On the PeV knee of the cosmic ray spectrum and the TeV cutoff of the electron spectrum , 2016, Physical Review D.

[20]  J. Lesgourgues,et al.  Cosmological constraints on exotic injection of electromagnetic energy , 2016, 1610.10051.

[21]  T. Slatyer,et al.  General constraints on dark matter decay from the cosmic microwave background , 2016, 1610.06933.

[22]  Aviad Cohen,et al.  Charting the parameter space of the global 21-cm signal , 2016, 1609.02312.

[23]  A. Green Microlensing and dynamical constraints on primordial black hole dark matter with an extended mass function , 2016, 1609.01143.

[24]  Ke Wang,et al.  Constraint on the abundance of primordial black holes in dark matter from Planck data , 2016, 1608.02174.

[25]  D. R. DeBoer,et al.  Hydrogen Epoch of Reionization Array (HERA) , 2016, 1606.07473.

[26]  T. Slatyer,et al.  Contributions to cosmic reionization from dark matter annihilation and decay , 2016, 1604.02457.

[27]  S. Watson,et al.  Nonthermal WIMPs and primordial black holes , 2016, 1603.00023.

[28]  W. Liu,et al.  Constraints on dark matter annihilation and decay from the isotropic gamma-ray background , 2016, 1602.01012.

[29]  M. Baring,et al.  New limits on the dark matter lifetime from dwarf spheroidal galaxies using Fermi-LAT , 2015, 1510.00389.

[30]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections , 2015, 1506.03812.

[31]  T. Slatyer Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results , 2015, 1506.03811.

[32]  Gino Tosti,et al.  Updated search for spectral lines from Galactic dark matter interactions with pass 8 data from the Fermi Large Area Telescope , 2015, 1506.00013.

[33]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[34]  A. Kirillov,et al.  Primordial black holes with mass 1016−1017 g and reionization of the Universe , 2014, 1409.8601.

[35]  A. Boyarsky,et al.  Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.

[36]  M. Markevitch,et al.  DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.

[37]  MIT,et al.  Current dark matter annihilation constraints from CMB and low-redshift data , 2013, 1310.3815.

[38]  S. Galli,et al.  Systematic Uncertainties In Constraining Dark Matter Annihilation From The Cosmic Microwave Background , 2013, 1306.0563.

[39]  T. Slatyer Energy Injection And Absorption In The Cosmic Dark Ages , 2012, 1211.0283.

[40]  A. Barnacka,et al.  New constraints on primordial black holes abundance from femtolensing of gamma-ray bursts , 2012, 1204.2056.

[41]  C. Hirata,et al.  HyRec: A fast and highly accurate primordial hydrogen and helium recombination code , 2010, 1011.3758.

[42]  J. Yokoyama,et al.  New cosmological constraints on primordial black holes , 2009, 0912.5297.

[43]  Edward J. Wollack,et al.  ARCADE 2 MEASUREMENT OF THE ABSOLUTE SKY BRIGHTNESS AT 3–90 GHz , 2009, The Astrophysical Journal.

[44]  M. Khlopov Primordial black holes , 2007, 0801.0116.

[45]  E. Pierpaoli,et al.  Effects of dark matter decay and annihilation on the high-redshift 21 cm background , 2006, astro-ph/0608385.

[46]  M. Mapelli,et al.  Intergalactic medium heating by dark matter , 2006, astro-ph/0606482.

[47]  M. Mapelli,et al.  The impact of dark matter decays and annihilations on the formation of the first structures , 2006, astro-ph/0606483.

[48]  Y. Shchekinov,et al.  Particle decay in the early Universe: predictions for 21 cm , 2006, astro-ph/0604231.

[49]  Z. Si,et al.  Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background , 2006, astro-ph/0603425.

[50]  Caltech,et al.  Impact of dark matter decays and annihilations on reionization , 2006, astro-ph/0603237.

[51]  C. Hirata Wouthuysen-Field coupling strength and application to high-redshift 21-cm radiation , 2005, astro-ph/0507102.

[52]  M. Kawasaki,et al.  Early reionization by decaying particles and cosmic microwave background radiation , 2004, astro-ph/0409419.

[53]  M. Zaldarriaga,et al.  21 Centimeter Fluctuations from Cosmic Gas at High Redshifts , 2003, astro-ph/0311514.

[54]  M. Kamionkowski,et al.  Particle decays during the cosmic dark ages , 2003, astro-ph/0310473.

[55]  E. Pierpaoli Decaying particles and the reionization history of the universe. , 2003, Physical review letters.

[56]  P. Madau,et al.  Probing beyond the Epoch of Hydrogen Reionization with 21 Centimeter Radiation , 2003, astro-ph/0303249.

[57]  MacGibbon Quark- and gluon-jet emission from primordial black holes. II. The emission over the black-hole lifetime. , 1991, Physical review. D, Particles and fields.

[58]  S. Hawking,et al.  Black Holes in the Early Universe , 1974 .

[59]  S. Hawking,et al.  Black hole explosions? , 1974, Nature.

[60]  Stephen W. Hawking,et al.  Gravitationally collapsed objects of very low mass , 1971 .

[61]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[62]  P. Peebles RECOMBINATION OF THE PRIMEVAL PLASMA. , 1968 .

[63]  George B. Field,et al.  Excitation of the Hydrogen 21-CM Line , 1958, Proceedings of the IRE.

[64]  S. A. Wouthuysen On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line. , 1952 .

[65]  I. Miyazaki,et al.  AND T , 2022 .