Rifting, subduction and collisional records from pluton petrogenesis and geochronology in the Hindu Kush, NW Pakistan

[1]  Shah Faisal,et al.  Building the Hindu Kush: monazite records of terrane accretion, plutonism and the evolution of the Himalaya–Karakoram–Tibet orogen , 2014 .

[2]  A. Pullen,et al.  Age and geochemistry of western Hoh-Xil-Songpan-Ganzi granitoids, northern Tibet: Implications for the Mesozoic closure of the Paleo-Tethys ocean , 2014 .

[3]  Tao Wang,et al.  Evolution, source and tectonic significance of Early Mesozoic granitoid magmatism in the Central Asian Orogenic Belt (central segment) , 2013 .

[4]  A. Burrows,et al.  Enhanced sensitivity in laser ablation multi-collector inductively coupled plasma mass spectrometry , 2013 .

[5]  A. Zanchi,et al.  The Cimmerian geopuzzle: new data from South Pamir , 2013 .

[6]  T. Ahmad,et al.  Timescales of partial melting in the Himalayan middle crust: insight from the Leo Pargil dome, northwest India , 2013, Contributions to Mineralogy and Petrology.

[7]  M. Petterson,et al.  Magmatism and metamorphism linked to the accretion of continental blocks south of the Hindu Kush, Afghanistan , 2013 .

[8]  J. King,et al.  What is the significance of oligocene melting in the Himalaya , 2013 .

[9]  P. Castiñeiras,et al.  Age constraints on Lower Paleozoic convection system: Magmatic events in the NW Iberian Gondwana margin , 2012 .

[10]  Wei-dong Sun,et al.  Petrology, geochemistry, and tectonic significance of Mesozoic shoshonitic volcanic rocks, Luzong volcanic basin, eastern China , 2012 .

[11]  Liang Tang,et al.  U-Pb zircon age, geochemical and Sr-Nd isotopic data as constraints on the petrogenesis and emplacement time of andesites from Gerze, southern Qiangtang Block, northern Tibet , 2012 .

[12]  O. Beyssac,et al.  Metamorphic history of the South Tibetan Detachment System, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modelling , 2011 .

[13]  A. Zanchi,et al.  The geology of the Karakoram range, Pakistan: the new 1:100,000 geological map of Central-Western Karakoram , 2011 .

[14]  J. Burg The Asia–Kohistan–India Collision: Review and Discussion , 2011 .

[15]  K. Zhao,et al.  Geochemical, zircon U–Pb dating and Sr–Nd–Hf isotopic constraints on the age and petrogenesis of an Early Cretaceous volcanic-intrusive complex at Xiangshan, Southeast China , 2011 .

[16]  R. Parrish,et al.  Contribution of crustal anatexis to the tectonic evolution of Indian crust beneath southern Tibet , 2011 .

[17]  H. Koyi,et al.  Mid-Cimmerian, Early Alpine and Late Cenozoic orogenic events in the Shotur Kuh metamorphic complex, Great Kavir block, NE Iran , 2010 .

[18]  J. Mao,et al.  Geochronology and geochemistry of the granites from the Mengku iron deposit, Altay Mountains, northwest China: implications for its tectonic setting and metallogenesis , 2010 .

[19]  A. Thow,et al.  Anatomy, age and evolution of a collisional mountain belt: the Baltoro granite batholith and Karakoram Metamorphic Complex, Pakistani Karakoram , 2010, Journal of the Geological Society.

[20]  Donna L. Whitney,et al.  Abbreviations for names of rock-forming minerals , 2010 .

[21]  W. Griffin,et al.  Apatite Composition: Tracing Petrogenetic Processes in Transhimalayan Granitoids , 2009 .

[22]  Wei-Qiang Ji,et al.  Geochronology and petrogenesis of granitic rocks in Gangdese batholith, southern Tibet , 2009 .

[23]  M. Searle,et al.  Cretaceous-Tertiary Carbonate Platform Evolution and the Age of the India-Asia Collision along the Ladakh Himalaya (Northwest India) , 2008, The Journal of Geology.

[24]  C. Yuan,et al.  U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on age and origin of Jurassic I- and A-type granites from central Guangdong, SE China: A major igneous event in response to foundering of a subducted flat-slab? , 2007 .

[25]  A. Zanchi,et al.  Age and isotopic constraints on magmatism along the Karakoram-Kohistan Suture Zone, NW Pakistan: evidence for subduction and continued convergence after India-Asia collision , 2007 .

[26]  S. Heuberger Kinematics of the Karakoram-Kohistan Suture Zone, Chitral, NW Pakistan , 2004 .

[27]  S. Wilde,et al.  Highly fractionated I-type granites in NE China (I): geochronology and petrogenesis , 2003 .

[28]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[29]  K. Ludwig User's Manual for Isoplot 3.00 - A Geochronological Toolkit for Microsoft Excel , 2003 .

[30]  S. Wilde,et al.  A-type granites in northeastern China: age and geochemical constraints on their petrogenesis , 2002 .

[31]  A. Pêcher,et al.  Presence and geodynamic significance of Cambro-Ordovician series of SE Karakoram (N Pakistan) , 2002 .

[32]  Calvin G. Barnes,et al.  A Geochemical Classification for Granitic Rocks , 2001 .

[33]  M. Searle,et al.  Chronology of deformation, metamorphism, and magmatism in the southern Karakoram Mountains , 2001 .

[34]  B. Chappell,et al.  Two contrasting granite types: 25 years later , 2001 .

[35]  M. Searle,et al.  Old origin for an active mountain range: Geology and geochronology of the eastern Hindu Kush, Pakistan , 2001 .

[36]  N. Harris,et al.  Fluid-enhanced melting during prograde metamorphism , 2001, Journal of the Geological Society.

[37]  R. Bilham,et al.  The Hindu Kush Seismic Zone as a Paradigm for the Creation of Ultrahigh‐Pressure Diamond‐ and Coesite‐Bearing Continental Rocks , 2001, The Journal of Geology.

[38]  M. Murata,et al.  K-Ar biotite ages from Miocene post-collisional Garam Chashma leucogranite, eastern Hindukush Range (Trans-Himalayas), northwestern Pakistan , 2000 .

[39]  J. Dostal,et al.  Contrasting behaviour of Nb/Ta and Zr/Hf ratios in a peraluminous granitic pluton (Nova Scotia, Canada) , 2000 .

[40]  M. Gaetani,et al.  Mantle exhumation along the Tirich Mir Fault Zone, NW Pakistan: pre-mid-Cretaceous accretion of the Karakoram terrane to the Asian margin , 2000, Geological Society, London, Special Publications.

[41]  Shakirullah,et al.  Geological evolution of the Hindu Kush, NW Frontier Pakistan: active margin to continent-continent collision zone , 2000, Geological Society, London, Special Publications.

[42]  M. Searle,et al.  Age of crustal melting, emplacement and exhumation history of the Shivling leucogranite, Garhwal Himalaya , 1999, Geological Magazine.

[43]  B. Chappell Aluminium saturation in I- and S-type granites and the characterization of fractionated haplogranites , 1999 .

[44]  Shakirullah,et al.  Tectonic significance of 24 Ma crustal melting in the eastern Hindu Kush, Pakistan , 1998 .

[45]  J. Mahoney,et al.  Tracing the Indian Ocean Mantle Domain Through Time: Isotopic Results from Old West Indian, East Tethyan, and South Pacific Seafloor , 1998 .

[46]  B. Frost,et al.  Reduced rapakivi-type granites: The tholeiite connection , 1997 .

[47]  M. Gaetani The Karakorum Block in Central Asia, from Ordovician to Cretaceous , 1997 .

[48]  P. King,et al.  Characterization and Origin of Aluminous A-type Granites from the Lachlan Fold Belt, Southeastern Australia , 1997 .

[49]  Asif Khan,et al.  Reconnaissance geology in Upper Chitral, Baroghil and Karambar districts (northern Karakorum, Pakistan) , 1996 .

[50]  M. Searle,et al.  Age of crustal melting and leucogranite formation from U-Pb zircon and monazite dating in the western Himalaya, Zanskar, India , 1995 .

[51]  Stéphane Guillot,et al.  Geochemical constraints on the bimodal origin of High Himalayan leucogranites , 1995 .

[52]  W. McDonough,et al.  The composition of the Earth , 1995 .

[53]  M. Sultan,et al.  Tectonic assembly of Gondwana , 1995 .

[54]  R. Beck,et al.  Stratigraphic evidence for an early collision between northwest India and Asia , 1995, Nature.

[55]  N. Harris,et al.  Decompression and anatexis of Himalayan metapelites , 1994 .

[56]  H. Martin The mechanisms of petrogenesis of the Archaean continental crust—Comparison with modern processes , 1993 .

[57]  N. Harris,et al.  Geochemical Constraints on Leucogranite Magmatism in the Langtang Valley, Nepal Himalaya , 1993 .

[58]  M. B. Crawford,et al.  Field relationships and geochemistry of pre-collisional (India-Asia) granitoid magmatism in the central Karakoram, northern Pakistan , 1992 .

[59]  N. Harris,et al.  Trace element modelling of pelite-derived granites , 1992 .

[60]  B. Chappell,et al.  I- and S-type granites in the Lachlan Fold Belt , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[61]  B. Windley,et al.  Changing source regions of magmas and crustal growth in the Trans-Himalayas: evidence from the Chalt volcanics and Kohistan batholith, Kohistan, northern Pakistan , 1991 .

[62]  M. B. Crawford,et al.  Leucogranites of the Himalaya/Karakoram: implications for magmatic evolution within collisional belts and the study of collision-related leucogranite petrogenesis , 1990 .

[63]  G. Eby The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis , 1990 .

[64]  R. Parrish,et al.  U-Pb age of the Baltoro granite, northwest Himalaya, and implications for monazite U-Pb systematics , 1989 .

[65]  G. M. Young,et al.  Formation and Diagenesis of Weathering Profiles , 1989, The Journal of Geology.

[66]  C. Stern,et al.  The Bhagirathi leucogranite of the High Himalaya (Garhwal, India); Age, petrogenesis, and tectonic implications , 1989 .

[67]  B. Windley,et al.  Metamorphic, magmatic, and tectonic evolution of the central Karakoram in the Biafo-Baltoro-Hushe regions of northern Pakistan , 1989 .

[68]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[69]  M. B. Crawford,et al.  The geochemical and tectonic evolution of the central Karakoram, North Pakistan , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[70]  J. Whalen,et al.  A-type granites: geochemical characteristics, discrimination and petrogenesis , 1987 .

[71]  P. Fort,et al.  Major intrusive stages in Afghanistan: Typology, age and geodynamic setting , 1987 .

[72]  A. Tindle,et al.  Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks , 1984 .

[73]  J. Achache,et al.  India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates , 1984, Nature.

[74]  G. M. Young,et al.  Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations , 1984 .

[75]  U. Schärer The effect of initial230Th disequilibrium on young UPb ages: the Makalu case, Himalaya , 1984 .

[76]  B. Chappell,et al.  Granitoid types and their distribution in the Lachlan Fold Belt, southeastern Australia , 1983 .

[77]  A. Hussain,et al.  Geology and mineral resources of the Chitral-Partsan area, Hindu Kush Range, northern Pakistan , 1980 .

[78]  A. Şengör,et al.  Mid-Mesozoic closure of Permo–Triassic Tethys and its implications , 1979, Nature.

[79]  R. Pankhurst,et al.  The interpretation of igneous rocks , 1979 .

[80]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[81]  P. C. Bateman,et al.  Variations of Major Chemical Constituents across the Central Sierra Nevada Batholith , 1970 .

[82]  J. G. Moore,et al.  The Quartz Diorite Boundary Line in the Western United States , 1959, The Journal of Geology.