An efficient method for computing the inverse of arrowhead matrices
暂无分享,去创建一个
George A. Gravvanis | S. A. Edalatpanah | H. Saberi Najafi | Seyyed Ahmad Edalatpanah | H. Najafi | G. Gravvanis
[1] G. Stewart,et al. Computing the eigenvalues and eigenvectors of symmetric arrowhead matrices , 1990 .
[2] Sabine Van Huffel,et al. Efficient reduction algorithms for bordered band matrices , 1995, Numer. Linear Algebra Appl..
[3] Gene H. Golub,et al. QR-Like Algorithms for Symmetric Arrow Matrices , 1992, SIAM J. Matrix Anal. Appl..
[4] C. Fonseca,et al. Explicit inverses of some tridiagonal matrices , 2001 .
[5] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[6] R. Plemmons,et al. IMPROVING JACOBI AND GAUSS-SEIDEL ITERATIONS , 1987 .
[7] H. Saberi Najafi,et al. Computational algorithms for computing the inverse of a square matrix, quasi-inverse of a non-square matrix and block matrices , 2006, Appl. Math. Comput..
[8] P. Robinson,et al. Variational bounds on the entries of the inverse of a matrix , 1992 .
[9] George A. Gravvanis,et al. High Performance Inverse Preconditioning , 2009 .
[10] Maria Morandi Cecchi,et al. The modified bordering method to evaluate eigenvalues and eigenvectors of normal matrices , 1996, Numerical Algorithms.
[11] Hubert Pickmann,et al. TWO INVERSE EIGENPROBLEMS FOR SYMMETRIC DOUBLY ARROW MATRICES , 2009 .
[12] Victor Y. Pan,et al. Fast and stable QR eigenvalue algorithms for generalized companion matrices and secular equations , 2005, Numerische Mathematik.
[13] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[14] Li Chen,et al. Efficient Recursive Multichannel Blind Image Restoration , 2007, EURASIP J. Adv. Signal Process..
[15] Lorenz S. Cederbaum,et al. The eigenvalue problem for ‘‘arrow’’ matrices , 1984 .
[16] George A. Gravvanis,et al. Solving Symmetric Arrowhead and Special Tridiagonal Linear Systems by Fast Approximate Inverse Preconditioning , 2002, J. Math. Model. Algorithms.
[18] George A. Gravvanis,et al. An approximate inverse matrix technique for arrowhead matrices , 1998, Int. J. Comput. Math..
[19] Uwe Schäfer. The Feasibility of the Interval Gaussian Algorithm for Arrowhead Matrices , 2001, Reliab. Comput..
[20] B. Parlett,et al. The use of a refined error bound when updating eigenvalues of tridiagonals , 1985 .
[21] Joshua Jortner,et al. Intramolecular Radiationless Transitions , 1968 .
[22] Jesse L. Barlow,et al. Accurate eigenvalue decomposition of real symmetric arrowhead matrices and applications , 2013, 1302.7203.
[23] S. A. Edalatpanah,et al. Comparison analysis for improving preconditioned SOR-type iterative method , 2013 .
[24] Suely Oliveira. A new parallel chasing algorithm for transforming arrowhead matrices to tridiagonal form , 1998, Math. Comput..
[25] Jan Brandts,et al. Computable eigenvalue bounds for rank-k perturbations , 2010 .
[26] Jack J. Dongarra,et al. Solving linear systems on vector and shared memory computers , 1990 .
[27] Aurél Galántai,et al. Parallel ABS projection methods for linear and nonlinear systems with block arrowhead structure , 1999 .
[28] S. A. Edalatpanah,et al. Iterative methods with analytical preconditioning technique to linear complementarity problems: application to obstacle problems , 2013, RAIRO Oper. Res..
[29] James Demmel,et al. On structure-exploiting trust-region regularized nonlinear least squares algorithms for neural-network learning , 2003, Neural Networks.
[30] Bruce W. Suter,et al. A Hub Matrix Theory and Applications to Wireless Communications , 2007, EURASIP J. Adv. Signal Process..
[31] J. W. Gadzuk. Localized vibrational modes in Fermi liquids. General theory , 1981 .
[32] David E. Stewart,et al. A graph-theoretic model of symmetric givens operations and its implications , 1997 .
[33] N. Mastronardi,et al. Fast and Stable Reduction of Diagonal Plus Semi-Separable Matrices to Tridiagonal and Bidiagonal Form , 2001 .
[34] Efstratios Gallopoulos,et al. Computing symmetric nonnegative rank factorizations , 2012 .
[35] George A. Gravvanis,et al. High performance finite element approximate inverse preconditioning , 2008, Appl. Math. Comput..
[36] George A. Gravvanis,et al. On the Solution of Boundary Value Problems by Using Fast Generalized Approximate Inverse Banded Matrix Techniques , 2003, The Journal of Supercomputing.
[37] Gérard Meurant,et al. A Review on the Inverse of Symmetric Tridiagonal and Block Tridiagonal Matrices , 1992, SIAM J. Matrix Anal. Appl..