The group theoretic approach to image representation

Abstract This paper presents a group theoretic approach to space frequency image analysis and synthesis. The Weil map-Zak transform provides a major tool for study certain nonabelian function theoretic concepts, which underly the Gabor expansion theory.

[1]  S. Winograd,et al.  Hecke's theorem in quadratic reciprocity, finite nilpotent groups and the cooley-tukey algorithm , 1982 .

[2]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[3]  Louis Auslander,et al.  On finite Gabor expansion of signals , 1990 .

[4]  A. A. Roback,et al.  Collected Papers Vol. I , 1940 .

[5]  R. Tolimieri Analysis on the Heisenberg manifold , 1977 .

[6]  Y. Y. Zeevi,et al.  Computer Image Generation Using Elementary Functions Matched to Human Vision , 1988 .

[7]  The algebra of the finite Fourier transform and coding theory , 1985 .

[8]  R. Tolimieri,et al.  AMBIGUITY FUNCTIONS AND GROUP REPRESENTATIONS , 1987 .

[9]  R. Tolimieri Heisenberg manifolds and theta functions , 1978 .

[10]  Mj Martin Bastiaans Gabor's signal expansion and degrees of freedom of a signal , 1982 .

[11]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[12]  J. Zak FINITE TRANSLATIONS IN SOLID-STATE PHYSICS. , 1967 .

[13]  Izidor Gertner,et al.  The discrete Zak transform application to time-frequency analysis and synthesis of nonstationary signals , 1991, IEEE Trans. Signal Process..

[14]  A. Janssen Gabor representation of generalized functions , 1981 .

[15]  Yehoshua Y. Zeevi,et al.  The Importance Of Localized Phase In Vision And Image Representation , 1988, Other Conferences.

[16]  Yehoshua Y. Zeevi,et al.  The Generalized Gabor Scheme of Image Representation in Biological and Machine Vision , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[18]  Tom Høholdt,et al.  Double series representation of bounded signals , 1988, IEEE Trans. Inf. Theory.

[19]  L. Auslander,et al.  Translation-invariant subspaces inL2 of a compact nilmanifold. I , 1973 .

[20]  R. Glauber Coherent and incoherent states of the radiation field , 1963 .

[21]  Mj Martin Bastiaans A Sampling Theorem For The Complex Spectrogram, And Gabor's Expansion Of A Signal In Gaussian Elementary Signals , 1981 .

[22]  Dennis Gabor,et al.  Theory of communication , 1946 .

[23]  Richard Tolimieri,et al.  Computing decimated finite cross-ambiguity functions , 1988, IEEE Trans. Acoust. Speech Signal Process..

[24]  R. Tolimieri,et al.  Radar Ambiguity Functions and Group Theory , 1985 .

[25]  Izidor Gertner,et al.  Discrete Fast fourier Transorm Algorithms: A Tutorial Survey , 1991 .

[26]  John Daugman Image Analysis And Compact Coding By Oriented 2D Gabor Primitives , 1987, Photonics West - Lasers and Applications in Science and Engineering.

[27]  A. Janssen The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .

[28]  Mj Martin Bastiaans Optical generation of Gabor's expansion coefficients for rastered signals , 1982 .

[29]  Richard Tolimieri,et al.  Characterizing the radar ambiguity functions , 1984, IEEE Trans. Inf. Theory.