The Satisfiability Threshold for a Seemingly Intractable Random Constraint Satisfaction Problem

We determine the exact threshold of satisfiability for random instances of a particular NP-complete constraint satisfaction problem (CSP). This is the first random CSP model for which we have determined a precise linear satisfiability threshold, and for which random instances with density near that threshold appear to be computationally difficult. More formally, it is the first random CSP model for which the satisfiability threshold is known and which shares the following characteristics with random $k$-SAT for $k \geq 3$: The problem is NP-complete, the satisfiability threshold occurs when there is a linear number of clauses, and a uniformly random instance with a linear number of clauses asymptotically almost surely has exponential resolution complexity.

[1]  Michael Molloy,et al.  The exact satisfiability threshold for a potentially intractable random constraint satisfaction problem , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[2]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[3]  Olivier Dubois,et al.  The 3-XORSAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[4]  Alan M. Frieze,et al.  Random k-Sat: A Tight Threshold For Moderately Growing k , 2005, Comb..

[5]  Laurent Simon,et al.  Fifty-Five Solvers in Vancouver: The SAT 2004 Competition , 2004, SAT (Selected Papers.

[6]  James M. Crawford,et al.  Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..

[7]  George Havas,et al.  A Family of Perfect Hashing Methods , 1996, Comput. J..

[8]  Dimitris Achlioptas,et al.  Lower bounds for random 3-SAT via differential equations , 2001, Theor. Comput. Sci..

[9]  Hans van Maaren,et al.  Whose side are you on? Finding solutions in a biased search-tree , 2008, J. Satisf. Boolean Model. Comput..

[10]  Andrea Montanari,et al.  Tight Thresholds for Cuckoo Hashing via XORSAT , 2009, ICALP.

[11]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction a More Accurate Picture , 2022 .

[12]  Nico M. Temme,et al.  ASYMPTOTIC ESTIMATES FOR GENERALIZED STIRLING NUMBERS , 1999 .

[13]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[14]  Gregory B. Sorkin,et al.  IBM Research Report The Satisfiability Threshold of Random 3-SAT Is at Least 3.52 , 2003 .

[15]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[16]  Alan M. Frieze,et al.  The satisfiability threshold for randomly generated binary constraint satisfaction problems , 2006, RANDOM-APPROX.

[17]  Lefteris M. Kirousis,et al.  Selecting Complementary Pairs of Literals , 2003, Electron. Notes Discret. Math..

[18]  Jeong Han Kim,et al.  Poisson Cloning Model for Random Graphs , 2008, 0805.4133.

[19]  Cristopher Moore,et al.  Random k-SAT: Two Moments Suffice to Cross a Sharp Threshold , 2003, SIAM J. Comput..

[20]  Michael Molloy Models and thresholds for random constraint satisfaction problems , 2002, STOC '02.

[21]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[22]  Tom M. Apostol,et al.  Book Reviews: Mathematical Analysis. A Modern Approach to Advanced Calculus , 1958 .

[23]  Andreas Goerdt,et al.  A Threshold for Unsatisfiability , 1992, MFCS.

[24]  Michael Molloy Cores in random hypergraphs and Boolean formulas , 2005 .

[25]  Mohammad R. Salavatipour,et al.  The resolution complexity of random constraint satisfaction problems , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[26]  WigdersonAvi,et al.  Short proofs are narrowresolution made simple , 2001 .

[27]  François Hennecart,et al.  Stirling distributions and Stirling numbers of the second kind. Computational problems in statistics , 1994, Kybernetika.

[28]  Nico M. Temme,et al.  Asymptotic estimates of Stirling numbers , 1993 .

[29]  David G. Mitchell Resolution and Constraint Satisfaction , 2003, CP.

[30]  Béla Bollobás,et al.  Graph Theory: An Introductory Course , 1980, The Mathematical Gazette.

[31]  M. Mézard,et al.  Two Solutions to Diluted p-Spin Models and XORSAT Problems , 2003 .

[32]  Joel H. Spencer,et al.  Sudden Emergence of a Giantk-Core in a Random Graph , 1996, J. Comb. Theory, Ser. B.

[33]  Michael Molloy When does the giant component bring unsatisfiability? , 2008, Comb..

[34]  Wei Li,et al.  Many hard examples in exact phase transitions , 2003, Theor. Comput. Sci..

[35]  S. Orszag,et al.  Advanced Mathematical Methods For Scientists And Engineers , 1979 .

[36]  Rémi Monasson,et al.  2+p-SAT: Relation of typical-case complexity to the nature of the phase transition , 1999, Random Struct. Algorithms.

[37]  Cristopher Moore,et al.  The phase transition in 1-in-k SAT and NAE 3-SAT , 2001, SODA '01.

[38]  Rémi Monasson,et al.  Relationship between clustering and algorithmic phase transitions in the random k-XORSAT model and its NP-complete extensions , 2007, ArXiv.

[39]  Bernd Becker,et al.  Speedup Techniques Utilized in Modern SAT Solvers An Analysis in the MIRA Environment , 2005 .

[40]  H. Connamacher,et al.  Threshold Phenomena in Random Constraint Satisfaction Problems , 2008 .

[41]  Martin E. Dyer,et al.  A probabilistic analysis of randomly generated binary constraint satisfaction problems , 2003, Theor. Comput. Sci..

[42]  John Franco,et al.  Probabilistic analysis of the Davis Putnam procedure for solving the satisfiability problem , 1983, Discret. Appl. Math..

[43]  Marijn J. H. Heule,et al.  March_dl: Adding Adaptive Heuristics and a New Branching Strategy , 2006, J. Satisf. Boolean Model. Comput..

[44]  Michael Molloy,et al.  A sharp threshold in proof complexity yields lower bounds for satisfiability search , 2004, J. Comput. Syst. Sci..

[45]  Michael Molloy,et al.  Cores in random hypergraphs and Boolean formulas , 2005, Random Struct. Algorithms.

[46]  Xavier Pérez-Giménez,et al.  A new upper bound for 3-SAT , 2008, FSTTCS.

[47]  Hans van Maaren,et al.  Effective Incorporation of Double Look-Ahead Procedures , 2007, SAT.

[48]  Nadia Creignou,et al.  Generalized satisfiability problems: minimal elements and phase transitions , 2003, Theor. Comput. Sci..

[49]  S. Kirkpatrick,et al.  2+p-SAT: relation of typical-case complexity to the nature of the phase transition , 1999 .

[50]  David G. Mitchell,et al.  Resolution Complexity of Random Constraints , 2002, CP.

[51]  W. T. Gowers,et al.  RANDOM GRAPHS (Wiley Interscience Series in Discrete Mathematics and Optimization) , 2001 .

[52]  Karol Pak,et al.  Stirling Numbers of the Second Kind , 2005 .

[53]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[54]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[55]  Eli Ben-Sasson,et al.  Short proofs are narrow—resolution made simple , 2001, JACM.

[56]  Ilkka Niemelä,et al.  Incorporating Learning in Grid-Based Randomized SAT Solving , 2008, AIMSA.

[57]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[58]  Abraham D. Flaxman A sharp threshold for a random constraint satisfaction problem , 2004, Discret. Math..

[59]  Barbara M. Smith,et al.  Constructing an asymptotic phase transition in random binary constraint satisfaction problems , 2001, Theor. Comput. Sci..

[60]  Nicholas C. Wormald,et al.  Encores on Cores , 2006, Electron. J. Comb..

[61]  Endre Szemerédi,et al.  Many hard examples for resolution , 1988, JACM.

[62]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[63]  Oliver Riordan,et al.  The k-Core and Branching Processes , 2005, Combinatorics, Probability and Computing.