Dielectric function and bowing parameters of InGaN alloys

Ga‐rich (0001)‐oriented InxGa1−xN alloys grown by molecular beam epitaxy or metal‐organic vapour phase epitaxy on GaN/sapphire templates were investigated by spectroscopic ellipsometry at room temperature. The analysis of the extracted dielectric function yielded the characteristic transition energies, i.e., for the band gaps and the high‐energy critical points (van Hove singularities). Accounting for strain by using the k · p formalism, a band‐gap bowing parameter of 1.65 ± 0.07 eV for strain‐free material was deduced. It is consistent with the ab initio calculated band‐gap‐dependence for uniform (not clustered) InGaN alloys. The bowing parameters for the high‐energy inter‐band transitions were found to be close to ∼1 eV.

[1]  Oliver Brandt,et al.  Coexistence of quantum-confined Stark effect and localized states in an (In,Ga)N/GaN nanowire heterostructure , 2011, 1109.6039.

[2]  Michael Heuken,et al.  Dielectric function and optical properties of quaternary AlInGaN alloys , 2011 .

[3]  A. Hangleiter,et al.  Growth and characterization of InGaN by RF-MBE , 2011 .

[4]  R. H. Jansen,et al.  Dielectric function and optical properties of Al-rich AlInN alloys pseudomorphically grown on GaN , 2010 .

[5]  Jing Li,et al.  InGaN/GaN multiple quantum well concentrator solar cells , 2010 .

[6]  P. Schley,et al.  Optical properties of InN grown on Si(111) substrate , 2010 .

[7]  G. Gobsch,et al.  Spectroscopic ellipsometry of wurtzite ZnO and GaN: Examination of a special case , 2010 .

[8]  Poul Georg Moses,et al.  Band bowing and band alignment in InGaN alloys , 2010 .

[9]  J. Misiewicz,et al.  Contactless electroreflectance of InGaN layers with indium content <=36%: The surface band bending, band gap bowing, and Stokes shift issues , 2009 .

[10]  T. Suski,et al.  Influence of indium clustering on the band structure of semiconducting ternary and quaternary nitride alloys , 2009 .

[11]  W. Richter,et al.  Identification of van Hove singularities in the GaN dielectric function: a comparison of the cubic and hexagonal phase , 2009 .

[12]  P. Schley,et al.  Influence of strain on the band gap energy of wurtzite InN , 2009 .

[13]  T. V. Shubina,et al.  Recombination of free and bound excitons in GaN , 2008 .

[14]  M. Kurouchi,et al.  Dielectric function and Van Hove singularities for In-rich In x Ga 1 − x N alloys: Comparison of N- and metal-face materials , 2007 .

[15]  W. Paszkowicz,et al.  Rietveld-refinement study of aluminium and gallium nitrides , 2004 .

[16]  Rüdiger Goldhahn,et al.  Dielectric Function of Nitride Semiconductors: Recent Experimental Results , 2003 .

[17]  L. Romano,et al.  Effect of composition on the band gap of strained InxGa1−xN alloys , 2003 .

[18]  Teresa Monteiro,et al.  Compositional dependence of the strain-free optical band gap in InxGa1−xN layers , 2001 .

[19]  John F. Muth,et al.  Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements , 1997 .

[20]  Shun Lien Chuang,et al.  k.p method for strained wurtzite semiconductors , 1996 .

[21]  D. Aspnes Direct Verification of the Third-Derivative Nature of Electroreflectance Spectra , 1972 .