Chapter 5 Phototransistors for Lightwave Communications

Publisher Summary This chapter focuses on the use of phototransistors for lightwave systems and photonic circuit applications. The basic operating characteristics of a bipolar phototransistor are described and the optical gain and the common-base and common-emitter current gains are determined from the current transport equations. The chapter derives a model for the noise characteristics of the heterojunction phototransistor (HPT) to project the sensitivity of an optical receiver with an HPT in the front end. The chapter concludes with a discussion on bipolar phototransistors and a review of work on novel structures and the integration of HPTs with other electrooptic components. A description of the operating characteristics of phototransistors with field-effect transistor-like structures is presented along with the results that have been obtained so far.

[1]  H. Beneking,et al.  GaAs-GaAlAs phototransistor/laser light amplifier , 1980 .

[2]  Akio Sasaki,et al.  InGaAsP–InP Heterojunction Phototransistors and Light Amplifiers , 1981 .

[3]  J. Shive The Properties of Germanium Phototransistors , 1953 .

[4]  H. Hovel,et al.  The electrical characteristics of nZnSe—pGe heterodiodes† , 1968 .

[5]  T. Moriizumi,et al.  Theoretical analysis of heterojunction phototransistors , 1972 .

[6]  R. Dingle,et al.  Confined carrier quantum states in ultrathin semiconductor heterostructures , 1975 .

[7]  C. Bethea,et al.  An ultrahigh speed modulated barrier photodiode made on P-type gallium arsenide substrates , 1981, IEEE Electron Device Letters.

[8]  M. Umeno,et al.  InGaAsP/InP phototransistor-based detectors , 1983, IEEE Transactions on Electron Devices.

[9]  C. Y. Chen,et al.  Modulated barrier photodiode: A new majority‐carrier photodetector , 1981 .

[10]  H. Beneking Full solid state image converter based on integration of phototransistors and LEDs , 1981, IEEE Electron Device Letters.

[11]  Herbert Kroemer,et al.  Theory of a Wide-Gap Emitter for Transistors , 1957, Proceedings of the IRE.

[12]  V. Reddi Influence of surface conditions on silicon planar transistor current gain , 1967 .

[13]  S. L. Miller Ionization Rates for Holes and Electrons in Silicon , 1957 .

[14]  P. Wright,et al.  High‐gain InGaAsP‐InP heterojunction phototransistors , 1980 .

[15]  C. Bethea,et al.  New graded band‐gap picosecond phototransistor , 1983 .

[16]  T. H. Windhorn,et al.  Al0.5Ga0.5As‐GaAs heterojunction phototransistors grown by metalorganic chemical vapor deposition , 1979 .

[17]  Phototransistors in digital optical communication systems , 1983 .

[18]  H. Beneking,et al.  High-gain wide-gap-emitter Ga1-xAlxAs-GaAs phototransistor , 1976 .

[19]  K. Ogawa,et al.  Small-area high-speed InP/InGaAs phototransistor , 1981 .

[20]  Yoshihiko Mizushima,et al.  High Speed Photoresponse Mechanism of a GaAs-MESFET , 1980 .

[21]  Makoto Konagai,et al.  (GaAl)As/GaAs heterojunction phototransistors with high current gain , 1977 .

[22]  Light‐activated electroluminescent switch with an active feedback circuit , 1982 .

[23]  H. Kroemer,et al.  Heterostructure bipolar transistors and integrated circuits , 1982, Proceedings of the IEEE.

[24]  Joe C. Campbell,et al.  Avalanche InP/InGaAs heterojunction phototransistor , 1983 .

[25]  H. Beneking,et al.  Monolithic GaAlAs/GaAs infrared-to-visible wavelength converter with optical power amplification , 1981, IEEE Transactions on Electron Devices.

[26]  Joe C. Campbell,et al.  InP/InGaAs heterojunction phototransistor with integrated light emitting diode , 1982 .

[27]  Comments on "high speed photoresponse mechanism of a GaAs-MESFET". , 1980 .

[28]  William Shockley,et al.  p − n Junction Transistors , 1951 .

[29]  H. Hovel,et al.  ZnSe-Ge heterojunction transistors , 1968 .

[30]  R.L. Anderson Experiments on Ge-GaAs heterojunctions , 1962, IRE Transactions on Electron Devices.

[31]  Joseph M. Ballantyne,et al.  An integrated photoconductive detector and waveguide structure , 1980 .

[32]  C. Baack,et al.  GaAs m.e.s.f.e.t.: a high-speed optical detector , 1977 .

[33]  A. Sasaki,et al.  High-current InGaAsP-InP phototransistors and some monolithic optical devices , 1982, IEEE Transactions on Electron Devices.

[34]  Performance comparison of heterojunction phototransistors, p-i-n FET's, and APD-FET's for optical fiber communication systems , 1981 .

[35]  K. Ogawa,et al.  Heterojunction phototransistors for long‐wavelength optical receivers , 1982 .

[36]  S. R. Forrest,et al.  An n‐In0.53Ga0.47As/n‐InP rectifier , 1981 .

[37]  G. A. May The Schottky-barrier-collector transistor , 1968 .

[38]  A. Y. Cho,et al.  Ultrahigh speed modulation‐doped heterostructure field‐effect photodetectors , 1983 .

[39]  D. Fritzsche,et al.  Fast response InP/InGaAsP heterojunction phototransistors , 1981 .

[40]  G. L. Pearson,et al.  Dark current reduction in AlxGa1−xAs‐GaAs heterojunction diodes , 1981 .

[41]  L. D. Flesner,et al.  Electron beam modulation of GaAs metal‐semiconductor field‐effect transistors , 1980 .

[42]  H. F. Cooke,et al.  Microwave transistors: Theory and design , 1971 .

[43]  J. Ebers,et al.  Alloyed junction avalanche transistors , 1955 .

[44]  G. Strull,et al.  A monolithic mosaic of photon sensors for solid-state imaging applications , 1966 .

[45]  G.E. Stillman,et al.  An analysis of the performance of heterojunction phototransistors for fiber optic communications , 1982, IEEE Transactions on Electron Devices.

[46]  C. Y. Chen Theory of a modulated barrier photodiode , 1981 .

[47]  E. Hara,et al.  FET photodetectors: A combined study using optical and electron-beam stimulation , 1982, IEEE Transactions on Electron Devices.

[48]  J. Early Effects of Space-Charge Layer Widening in Junction Transistors , 1952, Proceedings of the IRE.