Mock data challenge for the Einstein Gravitational-Wave Telescope

The Einstein Telescope (ET) is conceived to be a third generation gravitational-wave (GW) observatory. Its amplitude sensitivity would be a factor 10 better than advanced LIGO and Virgo and it could also extend the low-frequency sensitivity down to 1\char21{}3 Hz, compared to the 10\char21{}20 Hz of advanced detectors. Such an observatory will have the potential to observe a variety of different GW sources, including compact binary systems at cosmological distances. ET's expected reach for binary neutron star (BNS) coalescences is out to redshift $z\ensuremath{\simeq}2$ and the rate of detectable BNS coalescences could be as high as one every few tens or hundreds of seconds, each lasting up to several days. With such a signal-rich environment, a key question in data analysis is whether overlapping signals can be discriminated. In this paper we simulate the GW signals from a cosmological population of BNS and ask the following questions: Does this population create a confusion background that limits ET's ability to detect foreground sources? How efficient are current algorithms in discriminating overlapping BNS signals? Is it possible to discern the presence of a population of signals in the data by cross correlating data from different detectors in the ET observatory? We find that algorithms currently used to analyze LIGO and Virgo data are already powerful enough to detect the sources expected in ET, but new algorithms are required to fully exploit ET data.

[1]  S. Bose,et al.  Scientific objectives of Einstein Telescope , 2012, 1206.0331.

[2]  C. Broeck,et al.  Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3 , 2011, 1111.7314.

[3]  S. Hild Beyond the second generation of laser-interferometric gravitational wave observatories , 2011, 1111.6277.

[4]  C. Messenger,et al.  Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences. , 2011, Physical review letters.

[5]  K.Yamamoto,et al.  Scientific potential of Einstein Telescope , 2011, 1108.1423.

[6]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[7]  P. Rosado,et al.  Gravitational wave background from binary systems , 2011, 1106.5795.

[8]  Francesco Marin,et al.  Einstein gravitational wave Telescope conceptual design study , 2011 .

[9]  David Blair,et al.  STOCHASTIC GRAVITATIONAL WAVE BACKGROUND FROM COALESCING BINARY BLACK HOLES , 2011, 1104.3565.

[10]  D. Talukder,et al.  A blind hierarchical coherent search for gravitational-wave signals from coalescing compact binaries in a network of interferometric detectors , 2011, 1104.2650.

[11]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[12]  Drew Keppel,et al.  Efficiently enclosing the compact binary parameter space by singular-value decomposition , 2011, 1101.4939.

[13]  T. Regimbau The Astrophysical Gravitational Wave Stochastic Background , 2011, 1101.2762.

[14]  S. Fairhurst,et al.  Targeted coherent search for gravitational waves from compact binary coalescences , 2010, 1012.4939.

[15]  D. Talukder,et al.  Multibaseline gravitational wave radiometry , 2010, 1012.4530.

[16]  J. Gair,et al.  Intermediate-mass-ratio-inspirals in the Einstein Telescope. II. Parameter estimation errors. , 2010, 1011.0421.

[17]  C. Van Den Broeck,et al.  Determination of Dark Energy by the Einstein Telescope: Comparing with CMB, BAO and SNIa Observations , 2010, 1009.0206.

[18]  Edward K. Porter,et al.  Data analysis challenges for the Einstein Telescope , 2009, 0910.0380.

[19]  J. Gair,et al.  Exploring intermediate and massive black-hole binaries with the Einstein Telescope , 2009, 0907.5450.

[20]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[21]  S. Bose,et al.  Sensitivity studies for third-generation gravitational wave observatories , 2010, 1012.0908.

[22]  T. Hayler,et al.  Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .

[23]  J. Gair,et al.  Intermediate-mass-ratio-inspirals in the Einstein Telescope: I. Signal-to-noise ratio calculations , 2010, 1009.1985.

[24]  G. M. Harry,et al.  Advanced LIGO: the next generation of gravitational wave detectors , 2010 .

[25]  K. S. Thorne,et al.  Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors , 2010, 1003.2480.

[26]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[27]  B. Lackey,et al.  Tidal deformability of neutron stars with realistic equations of state , 2009, 0911.3535.

[28]  Pau Amaro-Seoane,et al.  DETECTION OF IMBHs WITH GROUND-BASED GRAVITATIONAL WAVE OBSERVATORIES: A BIOGRAPHY OF A BINARY OF BLACK HOLES, FROM BIRTH TO DEATH , 2009, 0910.0254.

[29]  B Johnson,et al.  An upper limit on the stochastic gravitational-wave background of cosmological origin , 2009, Nature.

[30]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[31]  B. S. Sathyaprakash,et al.  Cosmography with the Einstein Telescope , 2009, 0906.4151.

[32]  R. DeSalvo,et al.  A xylophone configuration for a third-generation gravitational wave detector , 2009, 0906.2655.

[33]  K. Kotake,et al.  STOCHASTIC NATURE OF GRAVITATIONAL WAVES FROM SUPERNOVA EXPLOSIONS WITH STANDING ACCRETION SHOCK INSTABILITY , 2009, 0904.4300.

[34]  Masaru Shibata,et al.  Measuring the neutron star equation of state with gravitational wave observations , 2009, 0901.3258.

[35]  Tania Regimbau,et al.  Gravitational-wave confusion background from cosmological compact binaries: Implications for future terrestrial detectors , 2009, 0901.2958.

[36]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[37]  H. Janka,et al.  Equation-of-state dependent features in shock-oscillation modulated neutrino and gravitational-wave signals from supernovae , 2008, 0808.4136.

[38]  A. Vecchio,et al.  Assigning confidence to inspiral gravitational wave candidates with Bayesian model selection , 2008, 0807.4483.

[39]  P. Graff,et al.  The Mock LISA Data Challenges: from challenge 3 to challenge 4 , 2008, 0806.2110.

[40]  A. Sengupta,et al.  Geometric algorithm for efficient coincident detection of gravitational waves , 2008, 0804.4816.

[41]  A. Vecchio,et al.  Search for a stochastic gravitational-wave signal in the second round of the Mock LISA Data Challenges , 2008, 0804.4144.

[42]  A. Perreca,et al.  Triple Michelson interferometer for a third-generation gravitational wave detector , 2008, 0804.1036.

[43]  E. al.,et al.  Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals , 2007, 0712.2050.

[44]  A. Lazzarini,et al.  Gravitational wave radiometry: Mapping a stochastic gravitational wave background , 2007, 0708.2728.

[45]  N. University,et al.  Short Gamma-Ray Bursts and Binary Mergers in Spiral and Elliptical Galaxies: Redshift Distribution and Hosts , 2007, 0706.4139.

[46]  S. Klein Astronomy and astrophysics with , 2008 .

[47]  Benno Willke GEO600 : status and plans , 2007 .

[48]  N. Christensen,et al.  Coherent Bayesian analysis of inspiral signals , 2007, 0707.3962.

[49]  P. B. Cameron,et al.  A New Population of High-Redshift Short-Duration Gamma-Ray Bursts , 2006, astro-ph/0611128.

[50]  Potsdam,et al.  3D collapse of rotating stellar iron cores in general relativity including deleptonization and a nuclear equation of state. , 2006, Physical review letters.

[51]  N. Christensen,et al.  Coherent Bayesian inference on compact binary inspirals using a network of interferometric gravitational wave detectors , 2006, gr-qc/0609131.

[52]  T. Regimbau,et al.  Detection regimes of the cosmological gravitational wave background from astrophysical sources , 2006, astro-ph/0607043.

[53]  C. Ott,et al.  A new mechanism for gravitational-wave emission in core-collapse supernovae. , 2006, Physical review letters.

[54]  D. Lamb,et al.  A Study of Compact Object Mergers as Short Gamma-Ray Burst Progenitors , 2006, astro-ph/0601458.

[55]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[56]  T. Regimbau,et al.  Expected Coalescence Rates of Ns-Ns Binaries for Laser Beam Interferometers , 2005, astro-ph/0510727.

[57]  V. Loriette,et al.  The Virgo detector , 2005 .

[58]  M. M. Casey,et al.  Upper limits on a stochastic background of gravitational waves. , 2005, Physical review letters.

[59]  Duncan A. Brown Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral , 2005, gr-qc/0505102.

[60]  E. al.,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005, gr-qc/0505042.

[61]  B. Allen χ2 time-frequency discriminator for gravitational wave detection , 2004, gr-qc/0405045.

[62]  S. Ando,et al.  Short gamma-ray bursts as a possible probe of binary neutron star mergers , 2004, astro-ph/0405411.

[63]  B. Schutz,et al.  Templates for stellar mass black holes falling into supermassive black holes , 2003, gr-qc/0301049.

[64]  A. Buonanno,et al.  Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2002, gr-qc/0211087.

[65]  S. Drasco,et al.  Detection methods for non-Gaussian gravitational wave stochastic backgrounds , 2002, gr-qc/0210032.

[66]  A robust and coherent network statistic for detecting gravitational waves from inspiralling compact binaries in non-Gaussian noise , 2002 .

[67]  A. Pai,et al.  Computational cost for detecting inspiralling binaries using a network of laser interferometric detectors , 2001, gr-qc/0110041.

[68]  K. Belczynski,et al.  A New Formation Channel for Double Neutron Stars Without Recycling: Implications for Gravitational Wave Detection , 2000, astro-ph/0012172.

[69]  A. Pai,et al.  A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2000, gr-qc/0009078.

[70]  M. Maggiore Gravitational wave experiments and early universe cosmology , 1999, gr-qc/9909001.

[71]  B. Allen,et al.  Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities , 1997, gr-qc/9710117.

[72]  Marco Lops,et al.  The Virgo interferometer , 1997 .

[73]  V. Lipunov,et al.  Evolution of the Double Neutron Star Merging Rate and the Cosmological Origin of Gamma-Ray Burst Sources , 1995, astro-ph/9504045.

[74]  L. R. Yungelson,et al.  Merging of Binary White Dwarfs Neutron Stars and Black-Holes Under the Influence of Gravitational Wave Radiation , 1994 .

[75]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[76]  Joshua R. Smith,et al.  LIGO: the Laser Interferometer Gravitational-Wave Observatory , 1992, Science.

[77]  T. Piran The implications of the Compton (GRO) observations for cosmological gamma-ray bursts , 1992 .

[78]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.