Organogenesis--Heart and Blood Formation from the Zebrafish Point of View

Organs are specialized tissues used for enhanced physiology and environmental adaptation. The cells of the embryo are genetically programmed to establish organ form and function through conserved developmental modules. The zebrafish is a powerful model system that is poised to contribute to our basic understanding of vertebrate organogenesis. This review develops the theme of modules and illustrates how zebrafish have been particularly useful for understanding heart and blood formation.

[1]  T. Dryja,et al.  Molecular genetics of retinitis pigmentosa. , 1995, Human molecular genetics.

[2]  T. Bouwmeester,et al.  The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. , 1999, Development.

[3]  C. Nüsslein-Volhard,et al.  Origin and development of the zebrafish endoderm. , 1999, Development.

[4]  M. Matzuk,et al.  Smad5 knockout mice die at mid-gestation due to multiple embryonic and extraembryonic defects. , 1999, Development.

[5]  A. Amsterdam,et al.  Proviral insertions in the zebrafish hagoromo gene, encoding an F-box/WD40-repeat protein, cause stripe pattern anomalies , 2000, Current Biology.

[6]  M. Ekker,et al.  The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. , 1999, Development.

[7]  F. Johnson Strategies to End Gender Based Violence: The USAID approach , 2001 .

[8]  W. Lam,et al.  Active transposition in zebrafish. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  M. Fishman,et al.  Parsing the Heart: Genetic Modules for Organ Assembly , 1997, Cell.

[10]  M. Fishman,et al.  Zebrafish dracula encodes ferrochelatase and its mutation provides a model for erythropoietic protoporphyria , 2000, Current Biology.

[11]  G. Stamatoyannopoulos,et al.  Coexpression of embryonic, fetal, and adult globins in erythroid cells of human embryos: relevance to the cell-lineage models of globin switching. , 1987, Developmental biology.

[12]  L. Zon,et al.  Turning mesoderm into blood: the formation of hematopoietic stem cells during embryogenesis. , 2000, Current topics in developmental biology.

[13]  Wolfgang Driever,et al.  gridlock, a localized heritable vascular patterning defect in the zebrafish , 1995, Nature Medicine.

[14]  J. Rushbrook,et al.  Comparison of adult, embryonic, and dystrophic myosin heavy chains from chicken muscle by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and peptide mapping. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[15]  S. Fisher,et al.  Patterning the zebrafish axial skeleton requires early chordin function , 1999, Nature Genetics.

[16]  D. Stainier,et al.  Multiple roles for Gata5 in zebrafish endoderm formation. , 2001, Development.

[17]  A. Schier,et al.  Hematopoietic mutations in the zebrafish. , 1996, Development.

[18]  A. Schier,et al.  Mutations affecting craniofacial development in zebrafish. , 1996, Development.

[19]  R. Aasland,et al.  A vasa-like gene in zebrafish identifies putative primordial germ cells , 1997, Mechanisms of Development.

[20]  M. Westerfield,et al.  The olfactory placodes of the zebrafish form by convergence of cellular fields at the edge of the neural plate. , 2000, Development.

[21]  K. Liem Form and Function of Lungs: The Evolution of Air Breathing Mechanisms , 1988 .

[22]  K. Kawakami,et al.  Identification of a functional transposase of the Tol2 element, an Ac-like element from the Japanese medaka fish, and its transposition in the zebrafish germ lineage. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[23]  L. Zon,et al.  Developmental biology of hematopoiesis. , 1995, Blood.

[24]  A. Bradley,et al.  Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. , 1996, Development.

[25]  D. Stainier,et al.  A sphingosine-1-phosphate receptor regulates cell migration during vertebrate heart development , 2000, Nature.

[26]  D. Stainier,et al.  The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. , 1997, Development.

[27]  J. Huxley,et al.  The elements of experimental embryology , 1934 .

[28]  Thomas N. Sato,et al.  Universal GFP reporter for the study of vascular development , 2000, Genesis.

[29]  L. Zon,et al.  The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. , 1997, Development.

[30]  C. Nüsslein-Volhard,et al.  Mutations affecting the cardiovascular system and other internal organs in zebrafish. , 1996, Development.

[31]  R. Ho,et al.  The bHLH transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. , 2000, Development.

[32]  M. Ekker,et al.  Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. , 1998, Developmental biology.

[33]  M. Fishman,et al.  Regulation in the heart field of zebrafish. , 1998, Development.

[34]  Jun Yamashita,et al.  Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors , 2000, Nature.

[35]  J. Dowling,et al.  A dominant form of inherited retinal degeneration caused by a non-photoreceptor cell-specific mutation. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Dowling,et al.  A New Form of Inherited Red-Blindness Identified in Zebrafish , 1997, The Journal of Neuroscience.

[37]  A. Brownlie,et al.  Positional cloning of the zebrafish sauternes gene: a model for congenital sideroblastic anaemia , 1998, Nature Genetics.

[38]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[39]  M. Fishman,et al.  Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. , 1996, Development.

[40]  H. Baier,et al.  Genetic dissection of the retinotectal projection. , 1996, Development.

[41]  P. Mourrain,et al.  A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. , 2001, Genes & development.

[42]  Y. Kunz,et al.  ONTOGENESIS OF HAEMATOPOIETIC SITES IN BRACHYDANIO RERIO (HAMILTON‐BUCHANAN) (TELEOSTEI) * , 1977, Development, growth & differentiation.

[43]  D. Stainier,et al.  Gata5 is required for the development of the heart and endoderm in zebrafish. , 1999, Genes & development.

[44]  M. Kennedy,et al.  A common precursor for hematopoietic and endothelial cells. , 1998, Development.

[45]  Nancy Hopkins,et al.  Insertional mutagenesis and rapid cloning of essential genes in zebrafish , 1996, Nature.

[46]  D A Kane,et al.  Mutations affecting somite formation and patterning in the zebrafish, Danio rerio. , 1996, Development.

[47]  E. Traboulsi Ocular malformations and developmental genes. , 1998, Journal of AAPOS : the official publication of the American Association for Pediatric Ophthalmology and Strabismus.

[48]  M. Fishman,et al.  Convergence of distinct pathways to heart patterning revealed by the small molecule concentramide and the mutation heart-and-soul , 2001, Current Biology.

[49]  C. Kimmel,et al.  sucker encodes a zebrafish Endothelin-1 required for ventral pharyngeal arch development. , 2000, Development.

[50]  J. Postlethwait,et al.  SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. , 1998, Genes & development.

[51]  A. Amsterdam,et al.  not really finished is crucial for development of the zebrafish outer retina and encodes a transcription factor highly homologous to human Nuclear Respiratory Factor-1 and avian Initiation Binding Repressor. , 1998, Development.

[52]  L. Zon,et al.  Zebrafish: a model system for the study of human disease. , 2000, Current opinion in genetics & development.

[53]  B. Hogan,et al.  Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. , 1995, Genes & development.

[54]  J. Smith,et al.  Control of vertebrate gastrulation: inducing signals and responding genes. , 1993, Current opinion in genetics & development.

[55]  R. Bodmer The gene tinman is required for specification of the heart and visceral muscles in Drosophila. , 1993, Development.

[56]  B. Paw,et al.  Hereditary spherocytosis in zebrafish riesling illustrates evolution of erythroid beta-spectrin structure, and function in red cell morphogenesis and membrane stability. , 2000, Development.

[57]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[58]  Patrick W. Faloon,et al.  In vitro hematopoietic and endothelial potential of flk-1(-/-) embryonic stem cells and embryos. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[59]  C. Deng,et al.  Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. , 1999, Development.

[60]  L. Zon,et al.  Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. , 1999, Development.

[61]  Shuo Lin,et al.  A zebrafish model for hepatoerythropoietic porphyria , 1998, Nature Genetics.

[62]  C. Nüsslein-Volhard,et al.  Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. , 1997, Development.

[63]  Janet Rossant,et al.  A Requirement for Flk1 in Primitive and Definitive Hematopoiesis and Vasculogenesis , 1997, Cell.

[64]  Z. Izsvák,et al.  Characterization of a Tc1-like transposable element in zebrafish (Danio rerio) , 1995, Molecular and General Genetics MGG.

[65]  J. Malicki Genetic analysis of eye development in zebrafish. , 2000, Results and problems in cell differentiation.

[66]  L. Wolpert Positional information and the spatial pattern of cellular differentiation. , 1969, Journal of theoretical biology.

[67]  A. Schier,et al.  Mutations affecting development of the zebrafish retina. , 1996, Development.

[68]  Stephen L. Johnson,et al.  Genetic control of adult pigment stripe development in zebrafish. , 1995, Developmental biology.

[69]  Stephen L. Johnson,et al.  Zebrafish sparse corresponds to an orthologue of c-kit and is required for the morphogenesis of a subpopulation of melanocytes, but is not essential for hematopoiesis or primordial germ cell development. , 1999, Development.

[70]  D A Kane,et al.  Characterization of zebrafish mutants with defects in embryonic hematopoiesis. , 1996, Development.

[71]  M. Fishman,et al.  gridlock, an HLH gene required for assembly of the aorta in zebrafish. , 2000, Science.

[72]  M. Fishman,et al.  Gridlock signalling pathway fashions the first embryonic artery , 2001, Nature.

[73]  S. Ferrucci,et al.  Retinitis pigmentosa inversa. , 1998, Optometry and vision science : official publication of the American Academy of Optometry.

[74]  Le A. Trinh,et al.  The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. , 2000, Genes & development.

[75]  Stephen L. Johnson,et al.  An orthologue of the kit-related gene fms is required for development of neural crest-derived xanthophores and a subpopulation of adult melanocytes in the zebrafish, Danio rerio. , 2000, Development.

[76]  M. Rabinowitz,et al.  Cloned mRNA sequences for two types of embryonic myosin heavy chains from chick skeletal muscle. II. Expression during development using S1 nuclease mapping. , 1983, The Journal of biological chemistry.

[77]  M. Fishman,et al.  Vessel patterning in the embryo of the zebrafish: guidance by notochord. , 1997, Developmental biology.

[78]  M. Fürthauer,et al.  Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. , 2000, Development.

[79]  A. Schier,et al.  Mutations affecting the formation and function of the cardiovascular system in the zebrafish embryo. , 1996, Development.

[80]  B. Göttgens,et al.  The SCL gene specifies haemangioblast development from early mesoderm , 1998, The EMBO journal.

[81]  M. Fishman,et al.  Cardiovascular development in the zebrafish. I. Myocardial fate map and heart tube formation. , 1993, Development.

[82]  N. Hopkins,et al.  Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. , 1997, Development.

[83]  D A Kane,et al.  Jaw and branchial arch mutants in zebrafish I: branchial arches. , 1996, Development.

[84]  A. Amsterdam,et al.  The Aequorea victoria green fluorescent protein can be used as a reporter in live zebrafish embryos. , 1995, Developmental biology.

[85]  C. Nüsslein-Volhard,et al.  Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. , 1996, Development.

[86]  J. Burns,et al.  Integration and germ-line transmission of a pseudotyped retroviral vector in zebrafish. , 1994, Science.

[87]  J. Campos-Ortega,et al.  Notch signaling is required for arterial-venous differentiation during embryonic vascular development. , 2001, Development.

[88]  M. Fishman,et al.  Genetics of heart development. , 2000, Trends in genetics : TIG.

[89]  L. Zon,et al.  Dissecting hematopoiesis and disease using the zebrafish. , 1999, Developmental biology.

[90]  S. Jacobson,et al.  Cone-Rod Dystrophy: Phenotypic Diversity by Retinal Function Testing , 1989 .

[91]  W. Talbot,et al.  Essential role of Bmp7 (snailhouse) and its prodomain in dorsoventral patterning of the zebrafish embryo. , 2000, Development.

[92]  E. Raz,et al.  Identification of tissues and patterning events required for distinct steps in early migration of zebrafish primordial germ cells. , 1999, Development.

[93]  D. Ransom,et al.  Intraembryonic hematopoietic cell migration during vertebrate development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[94]  J. P. Hobson,et al.  Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. , 2000, The Journal of clinical investigation.

[95]  D. Stainier,et al.  casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. , 2001, Genes & development.

[96]  E. D. De Robertis,et al.  Gradient fields and homeobox genes. , 1991, Development.

[97]  E. Robertson,et al.  Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos , 1997, Developmental dynamics : an official publication of the American Association of Anatomists.

[98]  R. Karlstrom,et al.  Genetic analysis of axon guidance and mapping in the zebrafish , 1997, Trends in Neurosciences.

[99]  M. Fishman,et al.  Cell lineage tracing in heart development. , 1999, Methods in cell biology.

[100]  S. Ekker,et al.  Vectors and techniques for ectopic gene expression in zebrafish. , 1999, Methods in cell biology.

[101]  W. Stanford,et al.  Conditional requirement for the Flk-1 receptor in the in vitro generation of early hematopoietic cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.