Measurement of the axial rotation of nanorods trapped by a laser beam

Optical trapping of nanorods has attracted many researchers due to many potential applications of nanorods in sensor technologies. It is well known that nanorods align with the propagation axis or the polarization direction of a laser beam. However, there are only few studies about the axial rotation of nanorods. In this study, we present a method for the measurement of the rotational frequency of nanorods.

[1]  M E Friese,et al.  Optical torque controlled by elliptical polarization. , 1998, Optics letters.

[2]  M. Padgett,et al.  Advances in optical angular momentum , 2008 .

[3]  C P Grover,et al.  Experimental confirmation of the optical-trapping properties of cylindrical objects. , 1999, Applied optics.

[4]  Halina Rubinsztein-Dunlop,et al.  Integrated optomechanical microelements. , 2007, Optics express.

[5]  W Sibbett,et al.  Controlled Rotation of Optically Trapped Microscopic Particles , 2001, Science.

[6]  Demosthenes Ellinas,et al.  Optical Ferris Wheel for Ultracold Atoms , 2007 .

[7]  Peter J. Pauzauskie,et al.  Optical trapping and integration of semiconductor nanowire assemblies in water , 2006, Nature materials.

[8]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[9]  David G Grier,et al.  Structure and scaling of helical modes of light. , 2005, Optics letters.

[10]  H. Rubinsztein-Dunlop,et al.  Optical application and measurement of torque on microparticles of isotropic nonabsorbing material , 2003, physics/0309122.

[11]  C. Rao,et al.  Nanorotors using asymmetric inorganic nanorods in an optical trap , 2006 .

[12]  Halina Rubinsztein-Dunlop,et al.  Optical microrheology using rotating laser-trapped particles. , 2004, Physical review letters.

[13]  K. An,et al.  An optical spin micromotor , 2000 .

[14]  Lóránd Kelemen,et al.  Optically driven micromachines for biotechnological applications , 2005, SPIE Optics + Photonics.

[15]  Scott Forth,et al.  Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection , 2007, Nature Methods.

[16]  Johannes Courtial,et al.  Interactive approach to optical tweezers control. , 2006, Applied optics.

[17]  H. Rubinsztein-Dunlop,et al.  Optical measurement of microscopic torques , 2003 .

[18]  M J Padgett,et al.  Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. , 2002, Physical review letters.

[19]  Kurt D. Wulff,et al.  Controlled rotation of birefringent particles in an optical trap. , 2008, Applied optics.

[20]  M. Padgett,et al.  Limit to the orbital angular momentum per unit energy in a light beam that can be focussed onto a small particle , 2000 .

[21]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[22]  Kenji Miyakawa,et al.  Orbital motion of spherical microparticles trapped in diffraction patterns of circularly polarized light , 2007 .

[23]  R. A. Beth Mechanical Detection and Measurement of the Angular Momentum of Light , 1936 .

[24]  J. P. Woerdman,et al.  Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[25]  Naoya Matsumoto,et al.  Generation of high-quality higher-order Laguerre-Gaussian beams using liquid-crystal-on-silicon spatial light modulators. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  Pál Ormos,et al.  Complex micromachines produced and driven by light , 2001, CLEO 2002.

[27]  T. Walker,et al.  Light torque nanocontrol, nanomotors and nanorockers. , 2002, Optics express.