Robust Formation Control of Multiple Wheeled Mobile Robots

This paper considers formation control of a group of wheeled mobile robots with uncertainty. Decentralized cooperative robust controllers are proposed in two steps. In the first step, cooperative control laws are proposed for multiple kinematic systems with the aid of results from graph theory such that a group of robots comes into a desired formation. In the second step, cooperative robust control laws for multiple uncertain dynamic systems are proposed with the aid of backstepping techniques and the passivity properties of the dynamic systems such that multiple robots comes into a desired formation. Since communication delay is inevitable in cooperative control, its effect on the proposed controllers is analyzed. Simulation results show the effectiveness of the proposed controllers.

[1]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[2]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[3]  Randal W. Beard,et al.  A coordination architecture for spacecraft formation control , 2001, IEEE Trans. Control. Syst. Technol..

[4]  Jay A. Farrell,et al.  Cooperative Control of Multiple Nonholonomic Mobile Agents , 2008, IEEE Transactions on Automatic Control.

[5]  P. S. Krishnaprasad,et al.  Equilibria and steering laws for planar formations , 2004, Syst. Control. Lett..

[6]  Vijay Kumar,et al.  Hybrid control of formations of robots , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[7]  Lynne E. Parker,et al.  ALLIANCE: an architecture for fault tolerant multirobot cooperation , 1998, IEEE Trans. Robotics Autom..

[8]  Randal W. Beard,et al.  A decentralized approach to formation maneuvers , 2003, IEEE Trans. Robotics Autom..

[9]  Jay A. Farrell,et al.  Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty , 2009, Autom..

[10]  Hiroaki Yamaguchi A distributed motion coordination strategy for multiple nonholonomic mobile robots in cooperative hunting operations , 2003, Robotics Auton. Syst..

[11]  Dusan M. Stipanovic,et al.  Formation Control and Collision Avoidance for Multi-agent Non-holonomic Systems: Theory and Experiments , 2008, Int. J. Robotics Res..

[12]  Jay A. Farrell,et al.  Decentralized cooperative control of multiple nonholonomic systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[13]  R. Merris Laplacian graph eigenvectors , 1998 .

[14]  Mehran Mesbahi,et al.  Formation flying control of multiple spacecraft via graphs , 2001 .

[15]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[16]  Dimos V. Dimarogonas,et al.  On the Rendezvous Problem for Multiple Nonholonomic Agents , 2007, IEEE Transactions on Automatic Control.

[17]  Sarangapani Jagannathan,et al.  Neural Network Output Feedback Control of Robot Formations , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  David A. Schoenwald,et al.  Decentralized control of cooperative robotic vehicles: theory and application , 2002, IEEE Trans. Robotics Autom..

[19]  Vijay Kumar,et al.  Modeling and control of formations of nonholonomic mobile robots , 2001, IEEE Trans. Robotics Autom..

[20]  Wei Kang,et al.  Formation control of autonomous agents in 3D workspace , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[21]  Weiliang Xu,et al.  Adaptive tracking control of uncertain nonholonomic dynamic system , 2001, IEEE Trans. Autom. Control..

[22]  Kar-Han Tan,et al.  High Precision Formation Control of Mobile Robots Using Virtual Structures , 1997, Auton. Robots.

[23]  Vijay Kumar,et al.  Leader-to-formation stability , 2004, IEEE Transactions on Robotics and Automation.

[24]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[25]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[26]  R. Merris A survey of graph laplacians , 1995 .

[27]  Frank L. Lewis,et al.  Control of Robot Manipulators , 1993 .

[28]  A. Bloch,et al.  Control and stabilization of nonholonomic dynamic systems , 1992 .