Bayesian formulations of multiple instance learning with applications to general object recognition

ii

[1]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  Foster J. Provost,et al.  Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction , 2003, J. Artif. Intell. Res..

[3]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[4]  Laura A. Dabbish,et al.  Labeling images with a computer game , 2004, AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors.

[5]  Tomás Lozano-Pérez,et al.  A Framework for Multiple-Instance Learning , 1997, NIPS.

[6]  A. Karimi,et al.  Master‟s thesis , 2011 .

[7]  Vladimir Vapnik,et al.  The Nature of Statistical Learning , 1995 .

[8]  Oded Maron,et al.  Multiple-Instance Learning for Natural Scene Classification , 1998, ICML.

[9]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[10]  Robert Kohn,et al.  Nonparametric regression using linear combinations of basis functions , 2001, Stat. Comput..

[11]  P. Saama MAXIMUM LIKELIHOOD AND BAYESIAN METHODS FOR MIXTURES OF NORMAL DISTRIBUTIONS , 1997 .

[12]  Mário A. T. Figueiredo Adaptive Sparseness Using Jeffreys Prior , 2001, NIPS.

[13]  Nando de Freitas,et al.  Bayesian Feature Weighting for Unsupervised Learning, with Application to Object Recognition , 2003, AISTATS.

[14]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[15]  Daniel Gatica-Perez,et al.  On image auto-annotation with latent space models , 2003, ACM Multimedia.

[16]  Hoon Kim,et al.  Monte Carlo Statistical Methods , 2000, Technometrics.

[17]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[18]  R. Manmatha,et al.  A Model for Learning the Semantics of Pictures , 2003, NIPS.

[19]  Stan Matwin,et al.  Addressing the Curse of Imbalanced Training Sets: One-Sided Selection , 1997, ICML.

[20]  Peter Muller,et al.  Alternatives to the Gibbs Sampling Scheme , 1992 .

[21]  Jun S. Liu,et al.  Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .

[22]  Christian P. Robert,et al.  Monte Carlo Statistical Methods , 2005, Springer Texts in Statistics.

[23]  Christophe Andrieu,et al.  Joint Bayesian model selection and estimation of noisy sinusoids via reversible jump MCMC , 1999, IEEE Trans. Signal Process..

[24]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[25]  Andrew W. Moore,et al.  'N-Body' Problems in Statistical Learning , 2000, NIPS.

[26]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Peter Carbonetto Unsupervised Statistical Models for General Object Recognition , 2003 .

[28]  Oded Maron,et al.  Learning from Ambiguity , 1998 .

[29]  Christophe Andrieu,et al.  Online expectation-maximization type algorithms for parameter estimation in general state space models , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..

[30]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[31]  Christian P. Robert,et al.  MCMC Convergence Diagnostics : A « Reviewww » , 1998 .

[32]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[33]  Yixin Chen,et al.  Image Categorization by Learning and Reasoning with Regions , 2004, J. Mach. Learn. Res..

[34]  Bianca Zadrozny,et al.  Transforming classifier scores into accurate multiclass probability estimates , 2002, KDD.

[35]  Kotagiri Ramamohanarao,et al.  Sparse Bayesian Learning for Regression and Classification using Markov Chain Monte Carlo , 2002, ICML.

[36]  Jan Ramon,et al.  Multi instance neural networks , 2000, ICML 2000.

[37]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[38]  Nathalie Japkowicz,et al.  The class imbalance problem: A systematic study , 2002, Intell. Data Anal..

[39]  Robert C. Holte,et al.  C4.5, Class Imbalance, and Cost Sensitivity: Why Under-Sampling beats Over-Sampling , 2003 .

[40]  Foster Provost,et al.  The effect of class distribution on classifier learning: an empirical study , 2001 .

[41]  Thomas Hofmann,et al.  Support Vector Machines for Multiple-Instance Learning , 2002, NIPS.

[42]  Tim Hesterberg,et al.  Monte Carlo Strategies in Scientific Computing , 2002, Technometrics.

[43]  Nitesh V. Chawla,et al.  SMOTE: Synthetic Minority Over-sampling Technique , 2002, J. Artif. Intell. Res..

[44]  Charles Elkan,et al.  The Foundations of Cost-Sensitive Learning , 2001, IJCAI.

[45]  Y. Mori,et al.  Image-to-word transformation based on dividing and vector quantizing images with words , 1999 .

[46]  D. McFadden A Method of Simulated Moments for Estimation of Discrete Response Models Without Numerical Integration , 1989 .

[47]  R. Manmatha,et al.  Automatic image annotation and retrieval using cross-media relevance models , 2003, SIGIR.

[48]  Martial Hebert,et al.  Discriminative Fields for Modeling Spatial Dependencies in Natural Images , 2003, NIPS.

[49]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[50]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[51]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[52]  Robert E. Schapire,et al.  The Boosting Approach to Machine Learning An Overview , 2003 .

[53]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[54]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[55]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[56]  Thomas Gärtner,et al.  Multi-Instance Kernels , 2002, ICML.

[57]  Michael I. Jordan Graphical Models , 2003 .

[58]  Christos Faloutsos,et al.  Automatic image captioning , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[59]  John Geweke,et al.  Efficient Simulation from the Multivariate Normal and Student-t Distributions Subject to Linear Constraints and the Evaluation of Constraint Probabilities , 1991 .

[60]  Nando de Freitas,et al.  A Constrained Semi-supervised Learning Approach to Data Association , 2004, ECCV.

[61]  Qi Zhang,et al.  EM-DD: An Improved Multiple-Instance Learning Technique , 2001, NIPS.

[62]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Larry S. Davis,et al.  Improved fast gauss transform and efficient kernel density estimation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[64]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[65]  Peter Carbonetto,et al.  Why can’t José read? The problem of learning semantic associations in a robot environment , 2003, HLT-NAACL 2003.

[66]  Edward I. George,et al.  The Practical Implementation of Bayesian Model Selection , 2001 .

[67]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[68]  R. Manmatha,et al.  Multiple Bernoulli relevance models for image and video annotation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[69]  Nando de Freitas,et al.  An Introduction to MCMC for Machine Learning , 2004, Machine Learning.

[70]  C. Schmid,et al.  Bayesian learning for weakly supervised object classification , 2004 .

[71]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[72]  Antonio Torralba,et al.  Using the Forest to See the Trees: A Graphical Model Relating Features, Objects, and Scenes , 2003, NIPS.

[73]  Larry S. Davis,et al.  Efficient Kernel Machines Using the Improved Fast Gauss Transform , 2004, NIPS.