Robust Formulations of the Cauchy Method Suitable for Microwave Duplexers Modeling
暂无分享,去创建一个
G. Macchiarella | D. Traina | T. Sarkar | G. Macchiarella | T.K. Sarkar | D. Traina | Daniele Traina | Tapan K. Sarkar
[1] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[2] J. Cullum,et al. Lanczos algorithms for large symmetric eigenvalue computations , 1985 .
[3] R. Cameron. Advanced coupling matrix synthesis techniques for microwave filters , 2003 .
[4] G. Macchiarella,et al. Novel Approach to the Synthesis of Microwave Diplexers , 2006, IEEE Transactions on Microwave Theory and Techniques.
[5] M. Salazar-Palma,et al. Efficient electromagnetic optimization of microwave filters and multiplexers using rational models , 2004, IEEE Transactions on Microwave Theory and Techniques.
[6] L. Trefethen,et al. Numerical linear algebra , 1997 .
[7] G. Macchiarella,et al. A formulation of the Cauchy method suitable for the synthesis of lossless circuit models of microwave filters from lossy measurements , 2006, IEEE Microwave and Wireless Components Letters.
[8] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[10] P. Harscher,et al. Automated filter tuning using generalized low-pass prototype networks and gradient-based parameter extraction , 2001 .
[11] D. Sorensen. IMPLICITLY RESTARTED ARNOLDI/LANCZOS METHODS FOR LARGE SCALE EIGENVALUE CALCULATIONS , 1996 .
[12] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[13] E. K. Miller,et al. Application of the Cauchy method for extrapolating/interpolating narrowband system responses , 1997 .
[14] G. Macchiarella,et al. An analytical technique for the synthesis of cascaded N-tuplets cross-coupled resonators microwave filters using matrix rotations , 2005, IEEE Transactions on Microwave Theory and Techniques.
[15] M. S. Palma,et al. Generation of accurate rational models of lossy systems using the Cauchy method , 2004, IEEE Microwave and Wireless Components Letters.
[16] David S. Watkins,et al. Fundamentals of matrix computations , 1991 .
[17] Sabine Van Huffel,et al. Total least squares problem - computational aspects and analysis , 1991, Frontiers in applied mathematics.
[18] David S. Watkins,et al. Fundamentals of Matrix Computations: Watkins/Fundamentals of Matrix Computations , 2005 .